Technical English

Teacher's Book

Technical
 Teacher's Book

Celia Bingham
With additional material by David Bonamy

Pearson Education Limited

Edinburgh Gate
Harlow
Essex CM20 2JE
England
and Associated Companies throughout the world.

www.pearsonlongman.com

(c) Pearson Education Limited 2008

The right of Celia Bingham to be identified as author of this Work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved; no part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of the Publishers
Photocopying: The Publisher grants permission for the photocopying of those pages marked 'photocopiable' according to the following conditions. Individual purchasers may make copies for their own use or for use by the classes they teach. Institutional purchasers may make copies for use by their staff and students, but this permission does not extend to additional institutions or branches. Under no circumstances may any part of this book be photocopied for resale.
First published 2008
Second impression 2008
ISBN: 978-14058-4550-2 (book)
ISBN: 978-14058-8144-9 (book for pack)
Set in Adobe Type Library fonts
Printed in Spain by Graficas Estella

Acknowledgements

We would like to dedicate this book to the memory of David Riley, whose tireless professionalism contributed so much to its creation and success.
The author would like to thank Ben Greshon (Senior Editor), Robin Stokoe (Editor) and Carolyn Parsons (Editor).

The publishers and author would like to thank the following for their invaluable feedback, comments and suggestions, all of which played an important part in the development of the course: Eleanor Kenny (College of the North Atlantic, Qatar), Julian Collinson, Daniel Zeytoun Millie and Terry Sutcliffe (all from the Higher Colleges of Technology, UAE), Dr Saleh Al-Busaidi (Sultan Qaboos University, Oman), Francis McNeice, (IFOROP, France), Michaela Müller (Germany), Małgorzata OssowskaNeumann (Gdynia Maritime University, Poland), Gordon Kite (British Council, Italy), Wolfgang Ridder (VHS der Stadt Bielefeld, Germany), Stella Jehanno (Centre d'Etude des Langues/ Centre de Formation Supérieure d'Apprentis, Chambre de Commerce et d'Industrie de l'Indre, France) and Nick Jones (Germany).

Illustrated by Mark Duffin, Peter Harper and HL Studios
Cover image: Front: iStock Photo: Kristian Stensoenes
All other images © Pearson Education
Every effort has been made to trace the copyright holders and we apologise in advance for any unintentional omissions. We would be pleased to insert the appropriate acknowledgement in any subsequent edition of this publication.
Designed by HL Studios
Cover design by Designers Collective

Contents

Introduction page 5
Unit 1 Check-up page 8
Unit 2 Parts (1) page 16
Review Unit A page 24
Unit 3 Parts (2) page 28
Unit 4 Movement page 36
Review Unit B page 44
Unit 5 Flow page 48
Unit 6 Materials page 56
Review Unit C page 64
Unit 7 Specifications page 68
Unit 8 Reporting page 76
Review Unit D page 84
Unit 9 Troubleshooting page 88
Unit 10 Safety page 96
Review Unit E page 104
Unit 11 Cause and effect page 108
Unit 12 Checking and confirming page 116
Review Unit F page 124
Word list page 128

Introduction

Technical English is a two-level course for students in technical or vocational education, and for company employees in training at work. It covers the core language and skills that students need to communicate successfully in all technical and industrial specialisations. Level 1 is for students with a basic knowledge of general English who require an elementary course in English for specific purposes. This is benchmarked against CEF level AI, Level 2 is for students who have completed Level 1, or have an elementary knowledge of general English, and now require a pre-intermediate course in English for specific purposes. This is benchmarked against CEF level A2.
The course uses a multi-thread syllabus consisting mainly of communicative functions, notions, grammar, vocabulary and skills. The work-specific communicative functions (e.g. giving instructions, checking information) and technology-specific notions or concepts (e.g. causation, movement) are selected on the basis of relevance to the needs of students in technical, training and work contexts. Exponents of functions and notions are selected on the basis of frequency and relevance to needs. In Level I the grammar is sequenced; in Level 2 a more cyclical approach is taken, in which functions and notions reappear with more complex grammatical exponents.
The vocabulary of the course is a selection of commoncore lexical items that have a high frequency of use across a range of technical and industrial contexts. Many of these items can be found in general contexts, but have a greater frequency and often a more specific meaning in techmical contexts. Many of them are the kinds of words which a specialist in one field might use to explain technical concepts and specialised terms to the general public, or to specialists in other fields. (There are supplementary materials for students who need exposure to a more specialist industry-specific vocabulary: see Additional support at the end of this introduction.)
The methodology is transparent and straightforward, with a practical task-based approach. Activities are firmly rooted in shared meanings and clear contexts. The approach recognises that students may have differing motivations towards learning English, but assumes that they have a knowledge of, and interest in, technology and wish to develop their careers and technical skills. The topics and texts reflect current and future developments in technology and are designed to stimulate students' interest and motivation to find out more about them. From the beginning of the course, students are encouraged to use their technical knowledge and problem-solving skills.

Course Book 1

The Course Book contains twelve core units and six review units. Each core unit is divided into three sections. Each section (corresponding approximately to a 60-90 minute lesson) is contained on two facing pages, unified by a single theme, which may be a function, a concept or a topic. There is a four-page review unit after every two core units.

Core units

Start here

This is a warm-up activity which begins each doublepage section. In earlier units it takes the form of a simple activity which introduces or revises some useful vocabulary, or prepares for a topic through a short quiz. In later units it may be a question (based on a picture or diagram) for pairs or groups to discuss before they begin a reading or listening activity.

Listening

Listening skills are developed through a variety of activities using audio texts set in both work and training contexts. The listening activity requires students to carry out a practical task during or after listening, such as labelling a diagram, filling in a form or physically carrying out an instruction. Audio texts set in work contexts include voice mails, customer service calls, emergency phone calls, radio adverts, shouted warnings, spoken instructions and announcements. Audio texts set in a training context include short extracts from passages in monologue form such as lectures and technical demonstrations. Before students are expected to carry out any listening activity, they are given some background information and often carry out a small preparatory task (in the Start here activity) to set the context and encourage them to listen actively. For example, in some cases they answer a quiz from their own knowledge, and then listen to a passage which contains the answers.

Speaking

Speaking is an important skill, whether the user is talking to colleagues at work, dealing effectively with customers seeking advice or technical support, or in interactive training contexts such as tutorials or technical demonstrations. Speaking tasks in Course Book 1 reflect real-world situations, such as buying equipment, checking on progress, reporting damaged goods, checking information, asking about English words, giving personal details, asking about specifications or giving warnings. At this level, students are also guided towards giving short and simple talks based on diagrams. Speaking activities are conducted in pairs, small groups or individually to the class. In addition, the Task section (see over) includes information-gap activities.

Reading

Reading is a key skill needed by technologists both in the training context and at work. The texts they have to process in real life can vary enormously in length, complexity and genre. Readers' purposes vary from in-depth understanding to following instructions or searching for statistics. The reading texts in Course Book 1 reflect real-life texts and purposes, and are all based on authentic sources. These sources include websites, FAQs, manuals, technical magazines, textbooks, troubleshooting guides, customer service guides, catalogues, user guides, reports and specification charts. Labelled diagrams and photographs are liberally provided to aid comprehension of technical data, and students are always given some background information or asked to think about a topic (often in the Start here activity) before they start reading, so that they are using the texts actively. For example they may be asked to label a diagram of a device from their own knowledge before reading about the device and checking their labels. The texts use carefully controlled language and are accompanied by simple and practical tasks such as checking information, labelling a diagram, correcting details or completing a specification chart. Simple activities which highlight the use of cohesive devices and discourse markers are introduced gradually at this level. (Scanning or speed reading activities are introduced in Course Book 2.)

Writing

Writing skills are developed through a variety of tasks in realistic contexts, reflecting the range of text types which students might have to produce in a work context or as part of their technical training. Writing activities in a work context include filling in forms, comparing products for purchases or tenders, writing instructions to go with diagrams, writing emails, producing safety posters, writing rules and procedures and completing incident reports. Activities in a training or educational context include writing simple technical descriptions of devices and how they work. In addition, the Task section (see below) includes writing activities.

Task

The Task section provides students with opportunities to combine and use their language, skills and technical knowledge to communicate in situations that reflect the world of work or technical training. Tasks require different combinations of skill, knowledge and procedure. Some are in fact problem-solving or cognitive exercises designed to activate their background knowledge to help them in a reading, writing, listening or speaking activity. Others (normally coming at the end of a section) combine one or more skills, often as information-gap activities where one student of a pair uses data in the Extra material section at the back of the book (see below). Examples of tasks include using a catalogue to order equipment on the phone, or asking a worker about an accident in order to complete an accident report. Some tasks can be done individually, but most are done in pairs or small groups.

Language

The Language box draws students' attention to the key grammar of a lesson. The grammar is presented in a simple, straightforward manner and gives only the basic minimum of information necessary. The box is intended for reference or study only, and always follows a reading or listening activity in which the student has understood the grammar point in context. Where necessary, the Language box is accompanied by a short language practice exercise. If students need more information about grammar, or for revision, they can refer to the Grammar summary at the back of the Course Book.

Vocabulary

Vocabulary activities develop students' knowledge and use of common-core technical or sub-technical vocabulary. Many activities use visuals to clarify the meanings of basic technical words like axle. Other activities deal with lexical sets, word families and affixes (e.g. transmit, transmitter, transmission). Some pronunciation work on syllable stress (e.g. electrical, electricity) is covered here. Students are made aware of words that are used across several specialisms (e.g. deck) and everyday words that take on special meanings in technical contexts (e.g. jaws).

Social English

Each core unit in Course Book 1 includes a short activity practising the language from the unit in a social/ professional context. (In Course Book 2 social language is integrated into conversations between work colleagues and does not appear as a separate feature.)

Reference

Grammar summary

This gives more information about all the language points dealt with in the core units. It can be used as a reference during a lesson or for revision.

Reference section

This section at the back of the book includes useful reference material for the student, for example units of measurement and their abbreviations, numbers, times and dates, some common electrical and safety symbols, British and American English and social telephone and email phrases.

Extra material

This contains the materials needed by one-half of a pair of students, or members of a group, to erable them to carry out the communication activities in the Tosk sections.

Audio script

This is a complete transcript of all the listening material in the Course Book. This can be used in different ways
according to the levels and needs of your students. Students can use it to check their answers after they have completed a listening task.

Review units

Each Review unit revises and practises material from the preceding two core units. In addition it contains a Project section, which gives the students opportunities to do some simple further research into topics linked to the topics of the core units. They are encouraged to use the Internet or a library to carry out the research and present the results to the class either individually or as group tasks.

Teacher's Book 1

Unit summary

Each core unit in the Teacher's Book has a summary of the language, vocabulary and activities to be found in the core units of the Course Book.

Briefing

Each core unit in the Teacher's Book has a briefing which gives background information about the technical topics in the core units, and highlights any features of the language which need special attention in the unit. It also lists some websites which give more in-depth information about the topics.

Teaching notes

Each double facing page in the teaching notes corresponds to a double facing page section in the Course Book. Every main unit of the Teacher's Book contains procedural notes for each activity in the unit, ideas for extra activities if appropriate, answer keys and audio scripts. Every review unit contains answer keys for the review units in the Course Book plus a photocopiable Quick Test of the preceding two main units, to test lexis, grammar, functions, reading and writing.

Word list

This is at the end of the Teacher's Book. It contains all the key words used in the Course Book. It is sorted into alphabetical order with references to the unit where each word appears.

TestMaster CD-ROM

This contains entry and exit tests, progress tests and individual unit tests which can be downloaded and edited as required. Tests can be customised for specific purposes and institutions. The TestMaster CD-ROM is included in the Workbook.

Additional support

Course Book CD This contains all the recordings for the listening exercises in the Course Book.
Workbook with audio CD This provides additional material based on the Course Book, which can be set as class revision or homework. It also contains a unit-by-unit word list.
Companion Website The Companion Website contains supplementary teaching activities and industry-specific material to support the Course Book and the Workbook.

David Bonamy

1 Check-up

Contents

1 Basics

Start here: listening and completing a dialogue with the verb be
Practising a dialogue introducing yourself. My name is ... I'm ... Excuse me. Are you ...? Yes, I am./No, I'm I'm from ... Are you from ...? Hello. Hi. Pleased/Nice/Good to meet you.
Writing: filling in a form with personal details
Speaking: asking partner for personal details: What's your name? Where are you from? What do you do?/What's your job?
Listening: listening to a set of simple instructions for students to follow

Vocabulary: matching opposites
Quiz to check basic vocabulary: on/off/open/closed, etc.
Matching tools, fixings and electrical parts
Word list: in/out, in/on/under, left/right, on/off, open/ closed, up/down, adapter, antenna, bolt, cable, chisel, listen, lower, nut, pick up, plug, put down, raise, read, saw, say, screw, screwdriver, sit, spanner, stand, start, stop, washer, write

2 Letters and numbers

Start here: listening and correcting a business card
Listening: listening and completing forms in a range of contexts with names spelt out
Speaking: dictating and spelling out details from own business card
Arranging letters according to sounds
Competition: spelling out cities, countries: How do you spell ...?
Listening: matching pictures with a variety of radio, TV, automatic and tannoy announcements
Listening and inserting numbers in text
Speaking: Fizz Buzz game - counting up to 100
Vocabulary: matching a range of units with their abbreviations: metres (m)/amp (A)/ kilograms (kg), etc.
Listening: writing numbers next to correct unit: electrical, temperature, dimensions, speeds, temperatures, weight, capacity, currency

Word list: (receptive only) address, business card, cardinal numbers 1-100, company, email, full name, house number, hundred, model number, postal code, surname, thousand, units and abbreviations: amp/A, degree, degree Celsius, euro, foot/ft, gallon/gal, gram/g, inch/in, kilogram/kg, kilowatt/kW, kilometre/km, kilometres per hour $/ \mathrm{km} / \mathrm{h}$, litre/L, metre/m, negative, positive, pound, revolutions per minute/rpm, volt/V, watt/W

3 Dates and times

Start here: listening to a sports commentary and writing times and positions of athletes in results chart: First place, at three minutes 34.30 seconds
Speaking: classifying ordinals according to -th, -st, etc.
Saying the names of the months of the year
Saying the names of the days of the week
Reading out airport codes and saying ID numbers as single numbers
Saying dates of flights
Listening: writing down dates, using the written format $d d / m m / y y$, etc.
Speaking: saying dates using the spoken format: twentyeighth of December, two thousand and ten
Completing a table with 24 -hour clock and 12 -hour clock Practising saying 12 -hour/24-hour clock times: am/pm
Listening: adding times to a flight timetable
Listening and writing correct time for watches
Saying combined time and date
Social English: checking times and dates of appointments: OK, yes/no, that's right, It's on Friday. Is that the 24th? Yes. OK. See you then. What time? 7.30. See you. Bye.
Word list: ordinal numbers, numerical and verbal forms, $a m$, days, decimals, months, oh, pm, point

Briefing

This unit looks at ways of greeting strangers and introducing oneself in a professional setting. It also provides a quick review of using letters, numbers, dates, times and units of measurement.

1 Basics

Section 1 practises language used in introducing oneself to others. Hans, Pedro, Danielle, Mr Rossi, Jamal and Borys are young technical professionals visiting a trade exhibition, and meeting one another for the first time. Some different ways of introducing oneself, formal and informal, are practised. The use of contracted forms (such as I'm and What's) in more informal speech is highlighted. The question What do you do? (4) is used to ask someone what their job or profession is.
The adapter shown in 8 item 11 connects an electrical device to the mains power supply. (See Briefing for Unit 3.) The type of saw illustrated (item 4) is a hacksaw and cuts metal, as opposed to a jack saw, or wood saw, which cuts wood. The criss-cross head on the screws (item 5) is a Phillips head (see Briefing for Unit 2). The spanner (item 3) can also be called a wrench, especially in American English. (See the section on American and British English on page 110.) Your students need to be warned about the silent w in wrench.

2 Letters and numbers

Section 2 deals with letters and numbers, and how to spell out names, addresses, email addresses, phone numbers, product numbers and other items. Nominal numbers (used to identify things) and cardinal numbers (used to quantify or count things) are included. Nominal numbers, such as flight numbers, phone numbers, room numbers, serial numbers, product numbers and similar items, are said as separate digits: the phone number 02076482317 is said as oh-two-oh-seven-six-four-eight, and so on, not six hundred and forty-eight, for example. As a number, 0 is pronounced oh or zero. The decimal point is said as point: 2.07 is said two point oh seven. Times are said as cardinal numbers, for example 10.45 is ten fortyfive. Some units of measurement and their abbreviations such as kilometre (km) are practised with quantities in 9 and 10 . Here numbers are expressed as cardinal numbers, because they signify quantities: $190 \mathrm{~km} / \mathrm{h}$ is said as one hundred and ninety kilometres per hour. See the Reference section on page 106 for more information on units and abbreviations.

3 Dates and times

Section 3 deals with ordinal numbers from 1 to 31 as an introduction to dates. Ways of writing and saying dates are practised. The different methods of writing dates (US $\mathrm{mm} / \mathrm{dd} / \mathrm{yy}$; European $\mathrm{dd} / \mathrm{mm} / \mathrm{yy}$; and so on) mentioned on page 9 can often lead to misunderstandings. The ISO 8601 format for dates and times (see the note on page 9) is an international system for specifying dates and times which is intended to eliminate this misunderstanding: the information is ordered from largest unit (the year) to the smallest (the second). The 24 -hour clock and the 12 -hour clock are practised here. The abbreviations am and $p m$ are not used when the 24 -hour clock is used. (Note that the phrases o'clock, twenty past, quarter to and so on are not specifically taught in this book, as the $12 / 24$ hour clock systems are widely used; as an option, you could introduce or revise this method of telling the time as required.) In 6 , the system for specifying days is used by airlines in their reservations system: 1 is Monday, 2 is Tuesday, etc. If a flight goes every Wednesday and Friday, this is written as 35 (three five).

ISO 8601 format for dates and times:
http://en.wikipedia.org/wiki/ISO_8601
Airline timetable conventions: http://www.airtimetable.com/timeframes.htm
Interesting facts about numbers:
http://www.madras.fife.sch.uk/maths/amazingnofacts/ index.html

Teacher's notes

1 Basics

This first lesson aims to help you to find out the level of your students' English. It checks some basic structures and vocabulary.

Start here

1 02
Introduce yourself to a few students. Shake their hands and say who you are and where you're from. Take a few minutes doing this. Allow them to say as much or as little as they want to help you judge what pace to set this lesson.
Ask students to look at the picture. Ask them a couple of questions: Who are the men? (They're businessmen.) Where are they? (They're at a conference.) Tell them that the men are introducing themselves to each other.
Ask them to look at the dialogue and the words in the box. Explain that you're going to play the recording of the conversation and they have to complete the gaps in the dialogue with the words in the box. Play the recording for students to complete the dialogues. Then choose three pairs of students to read out the completed dialogues.
Refer students to the box in the margin which shows examples of the contracted form of be used in the dialogues. Explain that when you speak English, it's more common to use the contracted form and encourage them to use contractions when speaking in class. Tell students that they'll find more information about the verb be in the Grammar summary on page 100.
1 am 2 is 3 Are 4 I'm 5 name's 6 I'm 7 Are
8 I m

2 Put students in pairs. Demonstrate the activity with a confident student. Read out the first line, replacing the name Hans Beck with your own name and prompt the student to reply. Then say Pleased to meet you and shake the student's hand. Students then practise the dialogue in 1, changing the names and countries so that the information is about themselves.

Writing
3 Explain the difference between block capitals and lower case. Write your name up on the board and the name of your country. Circle the first letter of your first name and your surname, and the name of your country and explain that normally you write the first letter of names and countries using capital letters, but not the other letters. Explain that in this activity they have to complete a form, using block capitals, i.e. all the letters are capitals. This makes the form easy to read. Show them what to do, by writing the form up on the board and completing it using information about yourself, in block capitals. They then complete the form about themselves.

Extra activity

Pre-teach some vocabulary for jobs that your students do to begin with. Brainstorm a list of jobs they do on the board. Keep the list up on the board for reference and for 4.

Speaking

4 Ask a couple of students: What do you do? and elicit, e.g. I'm a student, I'm an electrician, I'm a technician, etc. Refer students to the note in the margin and explain that What do you do? is the same as What's your job. Explain that you use a before a consonant sound, e.g. student, technician, builder, etc. and an before a vowel sound, e.g. electrician, architect, etc.
Put students in pairs. They take it in turns to ask and answer the questions. Alternatively, students could mingle. Get them to walk around the class and ask and answer the questions with the other students.

Extra activity

Get students to write a or $a n$ in front of the jobs on the board.

Listening

5 -3

This activity practises instructions, using imperative forms. It also checks some basic verbs the class may or may not know. Tell students that they're going to play a game. Demonstrate the game with the class first before you play the recording. Explain that you will give some instructions and that they must follow the instructions only when you say please in the sentence. Tell them not to follow the instructions when you don't say please in the sentence. If they make a mistake, they're out of the game.
When students understand what to do, play the recording.

803

OK, please follow these instructions.
Please stand up.
Sit down, please.
Stand up again.
Please stand up again.
Raise your left arm.
Please raise your left arm.
Lower your arm, please.
Now raise your right arm.
Please raise it.
Now lower your arm, please.
OK, sit down.
Sit down!
Sit down, please.
Write your name, please.
Now say your name.
Please say your name.
Say Hello.
Say Hello, please.
Please pick up a book.
Please read it silently.
Now read it aloud.
Read it aloud, please.
Stop!
Stop!
Please stop.
Please be quiet.
Please say Goodbye.

Vocabulary

6 Go through the words in the boxes with students. Tell them that these words all come from the listening in 5 . Go through the example with the class first to show them what to do. Students match a word from the first box with its opposite in the second box.
pick up \neq put down
raise \neq lower
read \neq write
say \neq listen
stand \neq sit
start \neq stop

Extra activity

Miming activity
Students work in pairs. One student mimes one of the actions from 6 and another student guesses the word. Do an example for the class to guess first so that they know what to do.

7 This quiz checks students' knowledge of some basic vocabulary. Students look at the pictures and choose the correct option to complete the sentences about them.

$$
1 \mathrm{a} 2 \mathrm{~b} 3 \mathrm{a} 4 \mathrm{a} 5 \mathrm{~b} \text { a }
$$

8 This is another activity to check the students' knowledge of vocabulary for tools, fixings and electronic parts. Ask students to look at the pictures and then match them with the words in the box. They can check their answers with a partner before you check with the class. Point out the plural words in this list are all regular plurals and that you simply add an s to the singular noun.

1 chisel 2 screwdriver 3 spanner 4 saw 5 screws 6 nuts 7 bolts 8 washers 9 antenna 10 cable 11 adapter 12 plug

Extra activity

Put students into small groups. Students close their books. Ask one student to open their book and choose one of the objects from 8 . Tell them they must not show their object to the other students. They then start to draw the object. The other students must try and guess what the object is. The first student to guess correctly gets a point and chooses another object to draw, and so on. Stop the game after ten minutes and find out who has the most points.

2 Letters and numbers

Start here

1204
Ask students to look at the business card at the top of page 6. Explain that they're going to listen to Bruno Martin introducing himself on the recording and that there are four mistakes On his business card. Play the recording once. Then play it again pausing it after he says his name, his telephone number and his email address to allow students to correct the information. They can then compare their answers with a partner.

Bruno Martyn

Software Technician
Tel: (0033) (0)562 $198 \underline{5} 64$
Email: mart17@macrosoft.co.fr

304

I'm Bruno Martyn. That's M-A-R-T-Y-N. My phone number is oh oh three three, oh five six two, one nine, eight five, six four. My email address is mart seventeen at macrosoft dot co dot fr, that's M-A-R-T-seventeen at macrosoft dot co dot fr.

Listening

2

1. 05

Ask students to look at the three forms. Explain the difference between first name, surname and full name. Write your own name on the board as an example. Tell students that most British and American names form this pattern: first name (+ middle name/names) + surname, e.g. John Richard Wilson. You can call him either John (informal) or Mr Wilson (formal). Tell them that family name is the same as surname.
Play the recording. Pause after each one for students to complete the forms.

1 QUAYLE
VOX
pq99@biz.com
2 FIRE
17 EAST STREET
CS4 8NT
MATHERS

3 PIETER BRAUN 20953
67
G.J 8041

C) 05

1 [$\mathrm{R}=$ Receptionist; $\mathrm{Q}=\mathrm{Mr}$ Quayle]
R : Weicome, sir. Could you give me your surname, please?
Q: Yes, it's Quayle. Q-U-A-Y-L-E.
R: And your company name, sir?
Q: It's Vox.
R: How do you spell that?
Q: V-O-X.
R: Thank you. And your email address, sir?
Q: It's pq99 at biz.com. That's P-Q-ninety-nine at biz.com. That's B-I-Z dot com.
2 [$\mathrm{PO}=$ Phone operator; $\mathrm{M}=\mathrm{Ms}$ Mathers]
PO: Emergency, which service?
M: Fire.

PO: Right, what's your address?
M: 17 East Street.
PO: Repeat the address, please.
M: 17 East Street.
PO: How do you spell East?
M: E-A-S-T.
PO: What's your postal code?
M: CS4 8NT.
PO: Repeat your postal code, please.
M: CS4 8NT.
PO: And your surname, please.
M: Mathers.
PO: How do you spell that?
M: M-A-T-H-E-R-S.
PO: Thank you.
3 [CS = Customer Services; PB = Pieter Braun]
CS: This is Customer Services. How can I help you?
PB: My radio doesn't work.
CS: Oh, I'm sorry to hear that, sir. All right, please give me some details. What's your full name?
PB: Pieter Braun.
CS: How do you spell your surname?
PB: B-R-A-U-N.
CS: Thank you, Mr Braun. And what's your postal code?
PB: 20953.
CS: Thank you, and your house number, please?
PB: 67.
CS: Thank you, sir. And what's the model number of the radio?
PB: GJ 8041.
CS: Could you repeat that, please?
PB: GJ 8041.
CS: Thank you.

Speaking

3 For those students who don't have a business card, you can ask them to design their own card following the model in 1.
Students can work with a partner or move round the class, spelling out the details from the business card.
4 Focus students'attention on the first column. Explain that three has the same sound /i:/ as in the letter B. Ask students to repeat headings and letters after you. Point out that two of the letters of the alphabet don't have the same vowel sounds in the headings and go in the Exceptions column.
Students work on their own and put the letters in the correct column. They can then compare their answers with a partner. Finally, ask students to read out the letters in class to check that they're pronouncing the letters correctly.

three	eight	five	ten	two	Exceptions
BCD	AH	IY	FLM	QUW	OR
EGP	JK		NS		
TV			XZ*		

[^0]5 Put the class in small groups, and divide the groups into Teams A and B. Go through the instructions and the example with the class. Tell them to use their dictionaries to help them. Go round the class monitoring and helping students.

Listening

6

206

Tell students to look at the pictures and ask them what they can see. Play the recording. Students listen to the announcements and match them with the pictures. Then ask individual students to read out the numbers for the answers.

$$
1 \mathrm{~F} \quad 2 \mathrm{~A} \quad 3 \mathrm{G} \quad 4 \mathrm{E} \quad 5 \mathrm{C} \quad 6 \mathrm{~B} \quad 7 \mathrm{D}
$$

806

1 Counter number 11, please.
2 This is Radio 1 on 98.8 FM.
3 Please pay 18 pounds and 80 pence.
4 The 14.43 train to Oxford will depart from platform number 9.
5 Flight number EZ 370 is boarding now. Please go to gate number 14.
6 To donate money to Live Aid, ring this number now: 0207 9038672.

7 Begin countdown now: $20,19,18,17,16,15,14,13 \ldots$
7 Play the recording again for students to complete the sentences with numbers and letters.
Note that for flight numbers you say three seven oh, not three hundred and seventy. Also note that you say oh for 0 in telephone numbers in British English. In American English, you say zero.

```
111 21;98.8 3 18; \(80 \quad\) 4 14.43; \(9 \quad 5\) EZ 370; 14
\(602079038672 \quad 720,19,18,17,16,15,14,13\)
```


Extra activity

Write the number nineteen on the board, underlining the second syllable teen. Tell students that you put the stress on teen when you say the numbers 13 to 19 on their own. Play item 7 in the recording again and ask students to repeat the numbers. You could then ask them to continue counting down to one (or Blast off).

Speaking

8 Tell students that they're going to play a game with numbers. Go through the instructions and the example with the class. Ask students to close their books and organise the class so that they know when it's their turn to say a number. Demonstrate the game with the first five students by continuing counting quickly from 1 to 5 , and make sure that they say fizz for three and buzz for five. Then ask the students to start counting again from 1 .

Vocabulary

9 Students could work in small groups and discuss the meanings of these symbols.

Students probably won't have too much difficulty with this activity, as many of the abbreviations will be the same as in their own language. However, they may not be so familiar with the imperial measurements inch, feet and gallon, which are still used in the UK and the US.
$\mathrm{km}=$ kilometre
$+=$ plus
$\mathrm{g}=\mathrm{gram}$
in = inch
$\mathrm{kW}=$ kilowatt
$\mathrm{kg}=$ kilogram
$\mathrm{L}=$ litre
C = Celsius/centigrade
$\mathrm{km} / \mathrm{h}=$ kilometres per hour
$\mathrm{m}=$ metre
$£=$ pound sterling
$-=$ minus

- It - reet
€ = euro
$\mathrm{A}=\mathrm{amp} \quad \mathrm{W}=$ watt
3 $=$ degree
gal = gallon
$\mathrm{rpm}=$ revolutions per minute

Listening

$1 0 \longdiv { 9 0 7 }$

Play the recording for students to write the numbers by the correct symbol. Then play the recording again for students to repeat. Point out that kilometre is often pronounced kilometre, but can also be pronounced kilometre. Also note that in British English you write kilometre and metre, but in American English you write kilometer and meter.
Explain that in English, for decimal numbers, you use a full stop not a comma and say point, e.g. for 1.2 km , you say one point two kilometres. You use commas for thousands, e.g. 150,000 . This may be different from their own language.
Finally, point out that you say numbers before currency, e.g. 18 pounds, 80 euros, 15 pence, but you write the symbol before the number, e.g. 118 , $€ 80,15$ p.

$$
\begin{array}{llllll}
189^{\circ} \mathrm{C} & 213 \mathrm{~A} & \mathbf{3} 1.2 \mathrm{~km} & 413.8 \mathrm{~m} & 515^{\circ} & \mathbf{6} 190 \mathrm{~km} / \mathrm{h} \\
712,500 \mathrm{rpm} & 8160 \mathrm{~kg} & 940 \mathrm{~W} & 10 & 230 \mathrm{~V} & 1180 € \\
12 \mathrm{E} 50,000 \mathrm{~L} & & & & &
\end{array}
$$

807

eighty euros
fifteen degrees
thirteen amps
eighty-nine degrees Celsius
forty watts
one point two kilometres
thirteen point eight metres
one hundred and ninety kilometres per hour
one hundred and fifty thousand litres
twelve thousand five hundred revolutions per minute
two hundred and thirty volts
one hundred and sixty kilograms

3 Dates and times

Start here

$1-08$
Ask students to look at the photo. Ask them if they know who the runner is and what the race is. Tell them to look at the form where they will find the information and check their answer. (The photo is of El Guerrouj of Morocco winning the Men's 1500 metre race at the Athens Olympics in 2004.)
Focus students' attention on the column with the heading Position. Remind them that in the last lesson they practised cardinal numbers (one, two, three, etc.) and that the numbers here are ordinal numbers (first, second, third, etc.). They show the order in which things come. Point out that some of the information in this column is missing and that also some information in the last column for the athlete's time is missing. Play the recording for students to complete the missing information,
Allow students to compare their answers in pairs before you check with the class. Remind students that for decimal numbers you say point and explain that you say the numbers individually after the point, i.e. for 34.18 , you say thirty-four point one eight. Play the recording again and ask students to repeat the times.

$$
1 \text { 3rd } \quad 23: 35.61 \quad 33: 34.18 \quad 4 \text { 2nd } \quad 53: 36.33 \quad 65 \text { th }
$$

1208

Here are the results of the finals of the men's 1500 metre race: In first place, it's El Guerrouj from Morocco. His time is three minutes, thirty-four point one eight seconds.
In second place, it's Lagat from Kenya. His time is three minutes, thirty-four point three oh seconds.
In third place, it's Silva from Portugal. His time is three minutes, thirty-four point six eight.
In fourth place, it's Timothy Kiptanui from Kenya. His time is three minutes, thirty-five point six one.
In fifth place, it's Heshko from the Ukraine. His time is three minutes, thirty-five point eight two.
In sixth place, it's Mike East from Britain. His time is three minutes, thirty-six point three three.

Speaking

2 Refer students back to the ordinal numbers used for the positions in the form in 1 . Students put the ordinal numbers in the correct columns in the chart. They will notice that most of the numbers end in th, with the exception of first, second and third, and numbers that include one, two and three above twenty.
Students read the numbers out loud as a class. Make sure that they are pronouncing fourth and fifth correctly. Ask them to bite their bottom lip and blow some air out to pronounce/f/, then push their tongue up to touch their upper teeth to pronounce the $/ \theta /$ sound.

-st	-nd	-rd	-th
1st,	2nd,	3rd,	4th, 5th, 6th, 7th, 8th, 9th,
21st,	22nd	23rd	10th, 11th, 12th, 13th, 14th,
31st			15th, 16th, 17th, 18th, 19th,
			20th, 24th, 25th, 26th, 27th,
			28th, 29th, 30th

3 Go round the class, getting students to say the months of the year. Make sure that they have got the correct stress on January, February, August, September, October, November and December. Write these months up on the board with the stressed syllables underlined and get the students to repeat them after you.

January, February, March, April, May, June, July, August, September, October, November, December

4 Go round the class, getting students to say the days of the week. Make sure that they aren't pronouncing the d in Wednesday. Also that they're pronouncing Tuesday with a $/ \mathrm{t}$ / sound at the beginning and a/ $/ \mathrm{/}$ sound for Thursday.

Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday

5 In this activity, students revise the alphabet using airport codes. Ask students to look at the table of airport codes and read them out.
6 Ask students to look at the timetable of flights and focus on the column for days. Point out that the numbers refer to days of the week and these are shown at the bottom of the form. Give them an example by asking what day is number 5 .
Refer students to the information in the margin. Explain that for numbers, you write 306 people, and you say three hundred and six people. However, for flights, rooms, ID, product numbers, etc. you use single digits. For example, LH 306, you say LH three oh six (or three zero six in AmE). Students can then work with a partner and give the days of the week for each flight.

1 LH 306 departs from Frankfurt on Mondays and Thursdays.
2 AF 835 departs from Paris on Tuesdays. Thursdays and Saturdays.
3 EK 971 departs from London on Mondays, Tuesdays, Thursdays and Fridays.
4 MS 740 departs from Dubai on Mondays, Wednesdays, Fridays and Sundays.
5 AZ 7788 departs from Rome on Tuesdays, Wednesdays, Fridays and Saturdays.
6 SA 104 departs from Johannesburg on Mondays, Thursdays and Sundays.

Listening

7 409

Refer students to the note about the different ways of writing dates and go through the information with them. Ask them for today's date, using $d d / \mathrm{mm} / \mathrm{yy}$ and write it on the board.
Play the recording for students to write down the dates. They can then compare their answers with a partner before you check with the class. Tell them that for dates 2001 up to 2009 you say two thousand and one, two thousand and two, etc., but for dates above 2010 you say twenty-ten, twenty-eleven, twenty-twelve, etc.
1 28/12/2010
3 21/07/1999
2 18/11/2008
4 12/01/2009

509

1 The 28th of December 2010.
2 The 18th of November 2008.
3 The 21st of July 1999.
4 The 12th of January 2009.

Speaking

8 Demonstrate the activity by giving a date that is important for you. Say the date and write it up on the board, using $y y / \mathrm{mm} / d d$. Students then dictate dates to their partner.
9 Ask students what the time is. Write it up on the board using the 12 -hour clock and the 24 -hour clock. Make sure they understand that they have to use am for morning and $p m$ for afternoon, and that for 08.05, you say oh eight oh five. Refer students to the note in the margin and remind them that in American English you say zero for oh. Students complete the table. Go round the class checking their work while they're doing this. Then ask individual students to read out their answers.

$$
\begin{array}{lccccc}
\mathbf{1} 7.50 \mathrm{am} & 206.30 & \mathbf{3} 3.15 \mathrm{pm} & \mathbf{4 2 . 4 0} \mathrm{pm} & \mathbf{5} 16.45 \\
\mathbf{6 1 3 . 3 5} & \mathbf{7 8 . 2 5} \mathrm{pm} & \mathbf{8 5 . 5 5} \mathrm{am} & \mathbf{9 2 1 . 1 0} &
\end{array}
$$

10 Students read out the times using the 24 -hour clock then the 12 -hour clock.
1 five fifteen, five fifteen am
2 eight fifty, eight fifty am
3 eleven fourteen, eleven fourteen am
4 thirteen forty, one forty pm
5 fifteen eighteen, three eighteen pm
6 seventeen thirty, five thirty pm

Listening

11 R10
Ask students to look back at the timetable of flights in 6 on page 8 . Play the recording for students to add the times to the timetable. Note that the 24 -hour clock is normally just used for travel times in Britain.

1 Depart: 07.30, Arrive: 09.05
2 Depart: 08.20, Arrive: 10.10
3 Depart: 06,30 , Arrive: 15.15
4 Depart: 14.40, Arrive: 17.50
5 Depart: 21,10, Arrive: 16.15
6 Depart: 15.45, Arrive: 21.25

810

1 LH 306 departs from Frankfurt at seven thirty am and arrives in Warsaw at nine oh five am.
2 AF 835 departs from Paris at eight twenty am and arrives in Madrid at ten ten am.
3 EK 971 departs from London at six thirty am and arrives in Bahrain at three fifteen pm.
4 MS 740 departs from Dubai at two forty pm and arrives in Cairo at five fifty pm.
5 AZ 7788 departs from Rome at nine ten pm and arrives in Tokyo at four fifteen pm the next day.
6 SA 104 departs from Johannesburg at three forty-five pm and arrives in Lagos at nine twenty-five pm.

12 11
Ask students to look at the four watches. Ask students to tell their partner what the times are using the 24 -hour clock. Then play the recording for students to label the watches in the order of the times that they hear.

A 2 B 4 C 3 D 1

Q11

1 It's eighteen thirty-five on the fifteenth of September.
2 It's eight fifty-five on the fifth of November.
3 It's thirteen forty-five on the thirteenth of December.
4 It's fourteen fifty-five on the thirtieth of October.
13 Students read out the times and dates on the watches in 12 , using the 12 -hour clock.
A It's eight fifty-five am, on the fifth of November.
B It's two fifty-five pm, on the thirtieth of October.
C It's one forty-five pm, on the thirteenth of December.
D It's six thirty-five pm, on the fifteenth of September.

Social English

14 Ask students to look at the information on the note. Demonstrate the activity by asking one student to take the part of B and read out the conversation with them. Then ask students to take it in turns to practise the conversation, using different days and times.

Contents

1 Naming

Start here: listening to skateboarding records (dimensions, dates) and completing a table
Vocabulary: labelling a diagram of skateboard with parts: deck, etc.
Listening: checking labelling
Listening and completing a dialogue: What's this called (in English)?/It's called a deck.
Speaking: practising the dialogue using all parts on the diagram
Language: What's this/that called? What are these/those called? It's/They're called screws. It is/It's. They are/ They're.
Completing dialogues with this, that, these, those
Vocabulary: listening and repeating words for fixings: screw, etc.
Matching words with pictures of fixings
Speaking: practising asking and answering questions about fixings: What are these called? They're called screws.
Practising asking about near and far items
Puzzle: identify vehicles from unusual photos. Pair practice: What's this? I think it's a ...
Word list: axle, bike, boat, bolt, car, deck, motorbike, nail, nose, nut, plane, plate, rocket, screw, screwdriver, skateboard, spanner, staple, tail, truck, washer, wheel

2 Assembling

Start here: choosing items you need to assemble a skateboard
Listening: completing a checklist with sizes (20 mm / M20) and quantities. Written vs spoken: 5 mm vs five millimetres/mil. Syllable stress on millimetre
Speaking: making dialogues explaining what you need I need some ... What size? - 20 mm . How many? - 50 .
Task: preparation for reading - putting diagrams of stages of assembly into correct order
Reading: reading an instruction manual and checking diagrams are in the correct order
Language: word order and parts of speech - completing a table with verb + object + location: Put the wheels on the axle.

Vocabulary: listening and repeating verbs
Completing instructions with opposite verbs: loosen/ tighten, push/pull, put (on)/take (off)
Word list: assemble (receptive), fit (parts) together (receptive), loosen, mil, millimetre, numbers, put, push, pull, take, tighten, use

3 Ordering

Listening: noting down a voice mail message with name spelt out and phone number
Listening and correcting spellings and numbers
Speaking: dictating and spelling out words from the unit Leaving phone messages based on business cards, spelling out name, company and numbers. Taking notes. Checking notes against cards
Task: ordering skateboard accessories from an advert: I need to buy some things for my skateboard. OK. What do you need? - I need some pads. What size? - Large. What colour? - Blue. How many? - Four. What's your name? Please spell that.
Social English: introducing yourself and a friend: I'm Luis. I'm a student. And this is Paulo. He's a student, too. Hello, Luis. Hello, Paulo. Nice to meet you.
Word list: numbers, letters, double-5, double-oh, zero, blue, brown, colour, deck, green, hello, helmet, large, medium, pad, quantity, red, size, small, student, yellow

Briefing

This unit looks at ways of communicating about the parts (or components) of a tool or device, including using an instruction manual.

1 Naming

Section 1 deals with identifying and naming the parts of a skateboard. In fact, the names of parts introduced here are not limited to skateboards, but can be found in a range of technical devices and machines. A plate is a strong, flat piece of metal, often used for fixing one thing to another. It often has holes in it for screws or bolts. In this case, the plate is used for attaching the wheel assembly to the deck of the skateboard. In general, a deck is a flat structure, used as a platform for supporting something or someone, as in the deck of a boat or ship. The deck of the skateboard is the flat piece of wood or strong plastic which the skateboarder stands on. The nose of a vehicle or craft (such as a rocket, plane or skateboard) is the front part; the tail of a plane or skateboard is the rear or back section. A wheel rotates around a strong metal rod called an axle. The truck of a skateboard is another word for the wheel assembly. An assembly means a group of parts assembled together to form a single unit: if you assemble together the wheel, axle and plate, you create the truck. The word truck (or lorry) has another meaning: a large road vehicle for carrying goods.
The fixings in Section 1 are found in a range of technical fields. Nails are sharp and made of metal; they are hammered into wood. Screws are pointed and have a thread; they have to be rotated under pressure with a screwdriver into wood or masonry. Bolts, nuts and washers go together: they are used to fasten wood, plastic or metal parts together. Bolts have a thread but are not pointed; you place a nut and a washer on the end of the bolt and then tighten the nut or the bolt with a spanner. Staples are commonly used for holding telephone wires or cables close to a wall.
The language box at the top of page 11 explains the difference between What's this called? (when you know what something is, but don't know the technical term or English word for it) and What's this? (when you don't know what the thing is, in any language).

2 Assembling

Section 2 introduces the sizes of fixings. In Europe fixings are sized in millimetres (abbreviation mm). The UK and the US use both millimetres and inches (one inch is approximately 2.4 cm). Although the plural millimetres is used in speech, the written abbreviation mm never adds an $-s$. The colloquial word mil is used for singular and plural (one mil; five mil). The capital letter M before a number refers to the diameter or thickness of a screw or bolt: M6 means 6 mm in diameter.

3 Ordering

Exercise 3 has been kept simple. In reality, customers would probably specify both the length and the width of the bolts, screws or nails: What size? 10 mm (or M10) by 65 mm , please. (Note the use of by when you give two or more dimensions.) They would also probably specify the type of screw/ screwdriver head, for example slotted, Phillips or Posidrive (or Pozidriv). If your students are in trades such as building and construction, you could ask them to add details such as these.
The verb assemble (transitive) has two common synonyms which are transitive phrasal verbs: put together and fit together, for example assemble the skateboard = put the skateboard together. (The word order of phrasal verbs with noun/pronoun objects is taught in Book 2.) Notice in 8 that to tighten a nut or bolt you always rotate it in the direction of a clock's hands (or clockwise) as you look at it; to loosen it you rotate it anti-clockwise.

Skateboards: http://www.ehow.com/how_4792_setskateboard.html
Screws, screwdrivers, bolts, sizes: http://en.wikipedia. org/wiki/Screw
Types of spanners and wrenches: http://www.diydata. com/tool/spanner/spanner.php

Teacher's notes

1 Naming

Start here

1 B12

Ask students to look at the photo of the skateboarder and ask the class: Is the man doing a high jump or a long jump? (High jump.) Then tell students to look at the table and ask if any of them know or can guess the records for the skateboarding high jump and long jump. Play the recording for students to complete the form.
When checking the answers, tell students to note that you use a full stop to show decimals and not a comma, and that you say point, e.g. 7.1 (seven point one) metres. Remind them that they should use the European system to write the dates in the table. Students then compare their answers before you check with the class.
17.1 metres, $19 / 06 / 2003$

224 metres, 08/08/2004

© 12

The world record for a high jump on a skateboard is 7.1 metres. A young skateboarder, called Danny Way, jumps 7.1 metres on the 19th of June 2003.
The world record for a long jump on a skateboard is 24 metres. Skateboarder Danny Way jumps 24 metres on the 8th of August 2004.

Vocabulary

2 Put students in pairs. Ask them to look at the diagrams of the skateboard and label them with the words in the box. Do not confirm answers as this will be done in 3 .

Listening

$3 \square 13$

Play the recording for students to check their answers to 2 . Then check their answers, making sure that they're pronouncing all the words correctly.

1 tail 2 truck 3 deck 4 nose 5 wheel 6 axle 7 plate
$4 \quad 614$
Point to a part of the skateboard and ask What's this called? and elicit the answer. Then ask students to look at the dialogue. Play the recording for students to complete the dialogue.
Explain that you use this when you talk about something that is near to you. Then ask one half of the class to read out the questions in the dialogue, pointing to the parts they're asking about and ask the rest of the class to answer the questions. Make sure that students are using the contraction. What's in the question and It's in the answer.

1 called 2 called 3 this 4 a

815

A: What's this called?
B: It's called a deck.
A: What's this called in English?
B: It's called a truck.

Speaking

5 Put students in pairs to practise the dialogue, asking and answering questions about all the other parts of the skateboard. Remind them to point to the part on the diagram when asking the question.

Language

What's this? What's this called?

Go through the Language box with the students. Explain that you say What's this? when you don't know what something is (even in your own language), and you say What's this called? when you know what the object is, but you don't know the word for it.
Remind students that you use this to talk about something that's near you. Then tell them that when something is far away you use that. For plural objects that are near you, you say these and you say those for plural objects that are far away.
Demonstrate this, that, these and those using objects that you have with you or that are in the classroom.
6 Ask students to look at the pictures and complete the dialogues with the words in the box.
Ask students to read out the answers. Check that they're pronouncing / $\delta /$ correctly. Show them that the end of the tongue must be past their teeth. Tell them that in English you can pronounce th two different ways. Remind them of the pronunciation of ordinal numbers fourth, Fifth, sixth, etc., which has an unvoiced sound $/ \theta /$. The sound $/ \delta /$ in this, that, these and those is voiced. Tell them to touch their throats as they say the words and they should feel their throat vibrating. Check also that they're differentiating between the short $/ 1 /$ sound in this, and the longer /i:/ sound in these.

1 this, It's	3 these, They're
2 that, It's	4 those, They're

Vocabulary

7 P15
Play the recording for students to listen and repeat the words. Make sure that they're pronouncing the words correctly.
8 Ask students to look at the pictures and match them with the words from 7. Do not confirm answers at this stage.

[^1]
Speaking

9 Put students in pairs. Students now check their answers to 8 with their partner. Tell students to point to the picture when asking the question.
Go round checking that they're pronouncing the words correctly and are using contractions. Then check the answers with the whole class.
10 Students now point to objects inside or outside the classroom and ask the other students what they're called. Remind them to point clearly at the objects they want to find the English word for. If none of the students know the answer, tell them to look in a bilingual dictionary or ask you. Remind them to use this and these for things that are near them and that and those for things that are far away.
11 Put students in small groups. Ask them to point to the pictures and ask each other what the vehicles are. When they've finished they can check their answers on page 113.
1 racing car 2 rocket 3 mountain bike 4 plane
5 motorbike 6 boat

1 racing car 2 rocket 3 mountain bike 4 plane 5 motorbike 6 boat

2 Assembling

Start here

Revision

Play hangman to revise vocabulary from the previous section for parts of a skateboard, tools and fixings. Demonstrate the activity first. Think of a word to revise, e.g. skateboard, and write gaps up on the board to represent each of the letters in the word (_____). Ask students to guess a letter. If the letter is correct, write that letter above the line in the appropriate place in the word (e.g. ___E____). If the letter is incorrect, draw a line for the support for the man, then another line for the support for the next mistake. Then for each subsequent incorrect letter draw lines to represent the rest of the support the parts of the man's body, i.e. his head, his body, one arm, the other arm, one leg, and finally the other leg.

1 First, check that students understand the title of this section by asking them to read the information in the box.
Put students in pairs. Ask them to look back at the words from 7 on page 11, and discuss which items from the list they need to assemble a skateboard.

Listening

2

316

Ask students to look at the photo. Ask them what type of shop it is (a hardware shop) and what sorts of things you can buy there. Then ask students to look at the checklist. Tell them that they're going to listen to a customer in the shop asking for the things in the checklist. Go through the information in the box in the margin first, then play the recording for students to complete the checklist.

1 spanner: $10 \mathrm{~mm}, 1$
2 nuts: $7 \mathrm{~mm}, 4$
3 bolts: M5, 8

G16

[C = Customer; S = Shopkeeper]
C: Hello.
S: Good morning. What can I do for you?
C: I need a spanner, please.
S : What size do you need?
C: Erm, I think it's ten millimetres.
S : OK. Here you are. One ten-millimetre spanner.
C: Thanks. And I need some nuts, please.
S: Some nuts, did you say? OK, what size do you need?
C: Erm ... seven mil.
S: Right. And how many do you need?
C: Four.
S: Right. Here you are. Anything else?
C: Yes, I need some bolts, please.
S : What size?
C: M5.
S: And how many M5 bolts do you think you need?
C: Eight, please.
S : OK, here you are.
C: Thanks.

Speaking

3 Tell students that they're going to practise asking for the things they need to assemble a skateboard in a shop. Tell them to look back at the checklist and ask them what questions the shopkeeper uses when he asks about the size and quantity of the things the customer needs. (What size ...? How many?)
Ask students to look at the example dialogue. Choose a confident student. Take the part of the shopkeeper and ask the student to be the customer and read the dialogue out.
Then put students in pairs to practise asking for things in a shop, using the items listed. Go round listening to their dialogues and check that they're putting the stress on the first syllable of millimetre.

Task

4 Ask students to look at the diagrams and put them in the order in which you assemble a skateboard.
Students could then compare their order with a partner. Do not confirm answers at this stage.

Reading

5 Ask students to read the instruction manual and check their diagrams in 4 are correct according to the manual.

$$
1 \mathrm{~F} \quad 2 \mathrm{~B} \quad 3 \mathrm{D} \quad 4 \mathrm{E} \quad 5 \mathrm{C} \quad 6 \mathrm{~A}
$$

Language

6 Ask students to look at the table and the examples. Explain how the sentences are divided up into verb, object and location. Then ask them to complete the table in the same way using the information in the instruction manual in 5 . Point out that they need to leave some spaces in the location column blank.

1	Put the plate on the four bolts.		
2	Put	the nuts on the bolts.	
3	Tighten	the nuts.	
4	Put	the axle	on the large bolt.
5	Put	the large nut	on the large bolt.
6	Tighten	the nut.	
7	Put	the wheels on the axle.	
8	Put	the nuts	on the axle.
9	Tighten	the nuts.	

Vocabulary

7 217
Play the recording for the students to listen and repeat the verbs. Make sure that they're pronouncing the words correctly, particularly the $/ \mathrm{v} /$ sound in $p \underline{u} s h$, pull and pupt, and the $/ \mathrm{u}$:/ sound in loosen.

8 Ask the students to look at the pictures and complete the instructions below them using the words from 7. They can then compare their answers with a partner before you check with the class.

1 Put 2 Take 3 Push 4 Pull 5 Tighten 6 Loosen

9 Ask students to look at the verbs in the table and to write their opposites.

$$
1 \text { take (off) } 2 \text { loosen } 3 \text { pull }
$$

Extra activity

Put students in pairs and ask them to give instructions to a partner to mime, e.g. Put the book on the table.

3 Ordering

Revision

Quickly revise numbers with the class. Think of an eight-digit telephone number, make a note of it and hide this from students. Don't use one with repeated numbers such as 00 or 99 . Stand next to a student and whisper the telephone number in their ear. They then whisper that number into the next student's ear, and so on, until the number is repeated round the whole class. Ask the final student in the class what the number is, and check it with the number you'd written down at the beginning of the game.

Listening

1 C18

Ask students to look at the notes about the voice mail message, and ask them what information is missing. Play the recording for students to complete the notes. Read the answer out to the class and ask the students to repeat it.
Name: Ben Johnson
Phone number: 00442088947

E18

Thank you for calling Skateboards 4 U . Please leave a message after the tone.
Erm, Hello, Erm, I need some parts ... er ... for my skateboard. My name is Ben, Ben Johnson. That's J-O-H-N-S-O-N. My er ... my phone number is ... double oh, double 4, 208 8947. Please call me back. Thanks.

$2 \quad 019$

Go through the notes in the margin. Remind students that when giving telephone numbers, you say oh in British English and zero in American English. Explain that you can say five five or double five when you repeat a number. Point out that phone numbers are usually read out in blocks of numbers with pauses between them, and that you say them as individual numbers, e.g double oh double four [pause] two oh eight [pause] eight nine four seven. Ask students to look at the names and numbers and explain that these names and numbers aren't correct. Tell them that they're going to listen to the correct names and numbers on the recording, and as they listen they should correct the mistakes. Play the recording. Pause after each one for the students to make the corrections.
They can then check their answers with a partner before you play the recording one more time.

1 Abdul Monim Waheed 0020248830
2 José Fernando Ruiz $00359128 \underline{2} 8990$
3 Adil Al-Mansur $009712605 \underline{9943}$
4 Nikolai Kuznetsev $0074 \underline{5} 59882277$

CO 19
1 Abdul ... that's A-B-D-U-L Monim ... spelt M-O-N-I-M Waheed ... that's W-A-H-E-E-D, and my phone number is 0020248830.
2 José ... that's spelt J-O-S-E Fernando ... that's F-E-R-N-A-N-D-O Ruiz ... that's R-U-I-Z. Phone number 0035912828990.

3 Adil spelt A-D-I-L Al-Mansur ... that's A-L hyphen M-A-N-S-U-R. Phone number 0097126059943.
4 Nikolai that's N-I-K-O-L-A-I Kuznetsev ... that's spelt K-U-Z-N-E-T-S-E-V. Phone number 0074559882277.

Speaking

3 Put students in pairs. Tell them to choose words they've learnt from Unit 2. Tell them they're going to dictate these words to their partner. Ask them not to show the words to their partner. You could give them a maximum of six words each to dictate. They take it in turns to spell the word out for their partner to write down. They can then check their partner's spelling and then compare their answers to find out who has spelt the most words correctly.
4 Put students in pairs. Ask Student A to turn to page 112 and read the instructions. Student B leaves a message on Student A's voice mail, using the information from the business cards. They should spell out the names clearly. Tell them to say Can you repeat that, please? if they missed anything. Student A makes notes about their partner's business cards. They then swap roles.
Finally, students can check the details in the notes their partner has made, making sure that their partner has spelt the names correctly and that the telephone numbers are correct.

Task

5 Put students in pairs, Ask Student A to turn to page 112. Ask both students to look at the website advertisement and read their role. Tell them to look at the order form. Take the part of Student B and read the example dialogue with a confident student as Student A.
Remind students of the shop dialogue they practised on page 12 and elicit the questions the shopkeeper used to ask about size and quantity. Then refer students to the Useful phrases box where they will find a list of questions that the salesperson will need to ask the customer. (note that students will study present simple question forms in more detail in the next unit, so don't go into detail at this stage. Just teach these as phrases.) You could do the extra activity below before they start their roleplay.
Students now take it in turns to order the items that are circled, with the student who is taking the part of the shopkeeper making a note of the items their partner orders. Student B starts the conversation by asking Student A for items circled in their list and Student A making a note of what their partner has ordered. When they've finished ordering, ask Student A to check with their partner that they've taken down the correct information, They then swap roles,
Students then choose other items from the advertisement and take turns to phone up each other to order them, again making notes of the order and checking afterwards that they have the correct information.

Extra activity

Ask students to match 1-6 below with the replies a- E .
1 What size?
a 0643549
2 How many?
b blue
3 What's your name?
c Carmen
4 Please spell that.
d large
5 What's your phone number?
e two
6 What colour do you need?
f F-E-R-N-A-N-D-E-Z

Social English

6 E20
Ask students to look at the photo of the people introducing themselves to each other. Ask them to read the dialogue while you play the recording. Point out the contracted form He's and tell them that they should use He's or She's when speaking.
Then put students into groups of three. They practise introducing themselves and their partner to another student. When they've finished, you could ask groups of three to stand up, with one of the students introducing themselves and the other two students to the class.

C. 20

A: I'm Luis. I'm a student. And this is Paulo. He's a student; too.
B: Hello, Luis. Hello, Paulo. Nice to meet you.

Answer key

1 Is the machine on?
2 Are the switches off?
3 Is Roberto in London?
4 Are they IT technicians?
5 Is he a student?
6 Is she Polish?

21 No, it isn't Sunday today. It's Monday.
2 No, the power isn't on. It's off.
3 No, I'm not Peter. I'm John.
4 No, they aren't from Berlin. They're from Bonn.
5 No , she isn't a technician. She's an engineer.
6 No , he isn't an electrician. He's a builder.

31 My name's Jamal and I'm from Jordan.
2 This is Jean. He's French, but he isn't from Paris.
3 This is Frieda. She's from Rome, but she isn't Italian.
4 Look at the switch. It's down, but the power isn't on.
5 These are the wrong items. They aren't bolts. They're screws.
6 What's this tool called? What are these called?

41 are 2 do 3 Are 4 does 5 is 6 Are
a) is
b) am
c) is
d) are
e) $a m$ f) is

5 1e 2 b 3 a 4 f 5 c 6 d

8

3 screws	6 nails
8 bolts	5 nuts
4 washers	1 staple
1 spanner	1 screwdriver

9

on \neq off	left \neq right
stand \neq sit	up \neq down
large \neq small	open \neq closed
in \neq out	tighten \neq loosen
stop \neq start	

10
1b 2a 3 b 4 b

11 PRACTISE YOUR
ENGLISH EVERY DAY
WITH A FRIEND
121 What 2 How 3 What 4 What 5 What's 6 What's

131 Wednesday, the tenth of April 2007 at 1.40 pm .
2 Friday, the thirteenth of November 2009 at 7.55 am .
3 Monday, the third of September 2010 at 11.05 am .
4 Wednesday, the twenty-ninth of January 2011 at 9.32 pm .

14 a $11,13,17$ (prime numbers)
b 13, 21, 34 (Fibonacci numbers)
c $37,50,65\left(\mathrm{n}^{2}+1\right)$
d $110,111,1000$ (binary numbers)

151 five kilometres
2 two hundred and fifty kilograms
3 one thousand and fifteen euros
4 one hundred and ten volts
5 nought degrees Celsius
613 millimetres
$16 \quad 1 \mathrm{~T} \quad 2 \mathrm{~T} \quad 3 \mathrm{~F} \quad 4 \mathrm{~T} \quad 5 \mathrm{~T} \quad 6 \mathrm{~F} \quad 7 \mathrm{~F} \quad 8 \mathrm{~T} \quad 9 \mathrm{~F} \quad 10 \mathrm{~T}$ $11 \mathrm{~F} \quad 12 \mathrm{~T}$

17 a Loosen \mathbf{b} Use \quad c Take | \mathbf{d} | off | e Take | \mathbf{f} off | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| g Loosen | h Use | \mathbf{i} | Take | \mathbf{j} | off | \mathbf{k} |

181 Tighten the screws.
2 Use the large hammer.
3 Take the old wheel off the car.
4 Put the new wheel on the car.
5 Hammer the nails into the wood.
6 Push the bolts through the holes.

Project

19 Students can do their research on the Internet or in a library and in their own language if they wish. They must then write up their results in English.

Quick test answer key

Part 1: Vocabulary and grammar

$\mathbf{1}$ on	$\mathbf{4}$ off	$\mathbf{7}$ Start	
$\mathbf{2}$ Read	$\mathbf{5}$ open		
	$\mathbf{3}$ Put down	$\mathbf{6}$ Listen to	

Part 1: Vocabulary and grammar

1 Complete the opposites.
1 It's under the table.
2 Write the email.
3 Pick up your pen.
4 Turn on the TV.
5 The shop is closed.
6 Say the numbers.
7 Stop the car.
t's _ - the table.
--_ the email.
- -_-_ your pen.
Turn ___ the TV.
The shop is \qquad
--_-_ -_ the numbers.
---_ the car.
(7 marks)
2 Underline the odd word out in each group.
1 adapter, cable, plate, plug
2 boat, bike, plane, rocket, wheel
3 axle, deck, nose, skateboard, tail
4 antenna, bolt, nut, screw, nail
5 chisel, saw, screwdriver, spanner, washer

3 Write the numbers and abbreviations in words.
1120 kph \qquad
2 € 15 \qquad
3 22/12/09 \qquad
$4 \quad 36^{\circ} \mathrm{C}$ \qquad
5 Time: 5:32.80 \qquad
6 Phone: 055310863277
$7 \quad 15.45$ \qquad
81283 L
(8 marks)
4 Complete the dialogues with the correct form of the verb be. Use contractions where necessary.
A: (1) \qquad you an engineer?
B: No, I (2) \qquad I (3) \qquad an IT consultant.

A: (4) \qquad Patrizia from Germany?
B: No, she (5) \qquad She (6) \qquad from Switzerland.

A: (7) \qquad they 10 mm nails?
B: No, they (8) \qquad . They (9) \qquad 8 mm nails. (9 marks)

5 Write questions for these answers. Use What, Where, How.
1 \qquad
He's from Egypt.
2 \qquad
I'm an electrician.
3 \qquad
S-T-A-P-L-E
4
It's a tool.
5
They're called nuts.
6 \qquad screws \qquad ?
I need about 50 .
7 \qquad
10 mm , please.
(7 marks)
6 Put the words in the correct order to make sentences.
1 need / please / I/ some washers

2 the wheels / on the axle / put

3 off the table / the hammer / take

4 under the box / the spanner / is

Part 2: Reading and writing

Reading

Read the text. Are the sentences true (T) or false (F)?

How to change a wheel on a car

First, put your handbrake on. Then loosen the wheel nuts on the wheel. Use the spanner. (Sometimes the nuts are very tight.) Then raise the car off the road. Use the jack. Remove the wheel nuts and put them in a safe place. Take off the wheel, and then put on the new wheel and replace the wheel nuts. Tighten the nuts with your hand first. Then lower the car. Use the spanner and turn the nuts as tight as you can.

1 You loosen the nuts on the wheel first. T/F
2 When you change the wheel, the car is on the road. T/F
3 You put the old wheel nuts back on the car. T/F
4 You use your hand to tighten the nuts. T/F
5 The nuts aren't tight on the new wheel. T/F
(5 marks)

Writing

Read the telephone message and complete the form with the details.
(5 marks)

Hi

This is Sue Whittaker from Bluesports on the 5th March. It's two thirty in the afternoon. I'm phoning to cancel the order for 60 blue kneepads.

Time/Date of message: (1) \qquad
First name: (2) \qquad
Surname: (3) \qquad
Company: (4) \qquad
Message: (5) \qquad

Parts (2)

Contents

1 Tools

Start here: completing a TV advert with names of parts of the Multi Tool
Listening: completing a dialogue with have, do, does, doesn't
Listening and repeating tools: (a pair of) pliers, scissors, etc.
Language: present simple of have: question and negative forms
Pair practice: practising all forms of present simple of have Designing your own multi tool
Reading: preparing for reading - labelling another survival tool with parts
Reading a product review of a survival tool and checking answers
Speaking: pair practice about the survival tool: Does it have a ruler? Yes, it does.
Vocabulary: matching parts of tools in pictures to their names - handle, shaft, etc.
Drawing tools, labelling parts and describing them
Speaking: product comparison chart - comparing three products and making true sentences: The survival tool has a screwdriver, but the multi tool doesn't.
Writing: writing a comparison of the three products from the product comparison table
Word list: blade, bottle opener, can opener, chisel, cover, hammer, handle, head, jaws, knife, pliers, saw, scissors, screwdriver, spanner, shaft, wrench (vs spanner)

2 Functions

Start here: preparing for reading - identifying four sources of power
Reading: labelling a diagram of a radio
Listening and repeating names of everyday tools
Reading a product description and checking answers
Explaining functions of parts of a solar radio from a reading text
Matching components (of radio) with their functions, then making sentences in present simple: The thermometer measures temperature.
Making function sentences from a chart

Language: present simple questions, short answers and negative forms
Speaking: making questions and answers: Does a thermometer measure time? No, it doesn't. It measures temperature.
Making sentences: Pliers grip bolts.
Social English: making a list of job titles
Asking what other students in the class do: What do you do? - I'm a student. Where do you study? - I study at ... What does he do? - He's a .../ He works at
Word list: AC adapter, alarm, antenna, battery, clock, compass, cut, drive in, dynamo (rec), electricity, external, find, grip, handle, internal, light, loosen, make, measure, noise, open, produce (rec), radio, receive, shine, solar power, solar panel (rec), thermometer, torch, tell (the time), tighten, turn,

3 Locations

Start here: listening to a computer lesson and completing a dialogue: on/at, top/bottom, left/right
Vocabulary: matching a bank of monitors with their locations: top left, centre left, etc.
Language: prepositions of location
Reading: a description of a computer station setup (The printer is at the boltom on the left, etc.). Correcting mistakes according to a diagram
Language: developing location prepositional phrases: above, below, to the left of, to the right of
Completing sentences about the computer station with prepositions
Making sentences about the location of the computer station
Task: telling someone in an electronics shop where things are: on the bottom/middle/top shelf, below the shelves, to the left/right of the shelves, on the left/right, in/at the top/middle/bottom
Word list: amplifier, bottom, cable, centre, computer, cursor, DVD drive, headphones, keyboard, laptop computer, left, middle, mouse, mouse pad, printer, right, scanner, screen, shelf (shelves), speaker, top,

Briefing

This unit looks at the parts and components of tools, their functions and locations.

1 Tools

Section 1 introduces the names of some common hand tools such as hammer, knife, saw, spanner and ruler. A pick is a sharp pointed tool. Scissors and pliers are always plural and are often used with pair: a pair of pliers, a pair of scissors.
A can opener is a tool which opens tin cans; a bottle opener opens bottles.
Section 1 also introduces names for parts of tools. Many tools (such as hammers and axes) have a head, which does the heavy work of the tool. Most tools (such as chisels and saws) have a handle which allows the user to hold it. Longer tools (such as spades) and sports equipment (such as tennis rackets) may also have a shaft: a long, straight bar of strong material. Sharp tools usually have a blade. The plural word jaws is used for two parts which move together like the jaws of an animal. Pliers, pincers and the chuck of a drilling machine have jaws. The verb consists (of) is used in technical English instead of has when all the main parts of a tool or other object are listed, as in: A spade consists of a handle, a shaft and a blade. The verb appears in reading texts later in this book and in Book 2. If your students are ready, you could introduce it here.

2 Functions

In Section 2, the main reading text is an advertisement for a dynamo solar radio, a radio which is powered by a dynamo, and by solar energy. A dynamo is a device (found on some bicycle lights) which changes (or converts) movement into electricity. If you turn the large handle of the dynamo radio, the movement creates current to power the radio. The adjective solar shows that the radio can be powered by sunlight through the solar panel on the top of the radio. Another source of power is mains electricity (mains is always plural in this context), supplied through the power sockets in a building. An AC adapter (also called a power adapter) is an external power supply for notebook computers and other electronic devices. It converts AC current (from the mains supply) to DC current (needed by the device). It also converts the mains voltage to a lower voltage for the device. The dynamo solar radio in this text uses external and internal batteries: an internal battery is permanently fixed inside the device.

3 Locations

Section 3 deals with computer equipment and terms. Students will probably be familiar with the names of computer peripherals (external devices connected to a computer) such as screen (or monitor), printer, scanner, speakers, mouse, mouse pad, keyboard and DVD drive. In 1, the teacher and pupils are looking at a Windows screen, which has the start button at the bottom left of the screen, and the close button (marked with an X) at the top right. When you move the mouse around on the mouse pad, you see a cursor move around the screen. You click on items on the screen by pressing buttons on the mouse.
The difference between on the left and to the left of is dealt with in 4 on page 25 . The phrases on the left, on the right, etc. are adverbial in function: they are not followed by noun phrases. The words/ phrases to the left of, to the right of, etc. are prepositional in function: they are followed by houn phrases. The computer is to the left of the printer describes the location of the computer in relation to the printer.

Multi tools: http://www.swissknifeshop.co.uk/ swisstool_spirit.html
Basic physics topics, including dynamo: http://www. gcsescience.com/pielmag.htm
Solar panels: http://www.howstuffworks.com/solarcell.htm/printable
Hand tools: http://www.diynetwork.com/diy/shows_ dtsc/episode/0,2046,DIY_16164_30492,00.html
Computer terminology: http://academic.brooklyn. cuny.edu/education/jlemke/cpu-basic.htm

Teacher's notes

1 Tools

Start here

1
 C32

Ask students to look at the picture of the Multi Tool. Ask them to identify any of the tools on it that they can.
Play the recording for students to complete the text.

$$
1 \text { hammer } 2 \text { pliers } 3 \text { saw } 4 \text { blade } 5 \text { can opener }
$$

Q21

This is the new Multi Tool! Use it at home. Use it on the building site. Use it when you travel. It has a hammer and a pair of pliers. It also has a saw, a blade and a can opener. The Multi Tool has everything you need! Only £29.99. Buy one now!

Listening

2

322

Ask students to read the note in the margin. Point out the silent letter c in scissors. Tell them that some words in English include letters that aren't pronounced and scissors is one of them.
Play the recording for students to complete the dialogue.
After checking the answers with the class, you could go through the language notes with them. (See below.) Then ask students: Do you have a Multi Tool? and elicit the answer Yes, I do./No, I don't.

822

$\mathbf{1}$ have $\mathbf{2}$ do $\mathbf{3}$ have $\mathbf{4}$ does $\mathbf{5}$ have $\mathbf{6}$ doesn't

A: Do you have a Multi Tool?
B: Yes, I do.
A: Does the Multi Tool have a hammer?
B: Yes, it does.
A: Does it have a pair of scissors?
B; No, it doesn't.

3 23
Ask students to read and listen to the phrases first without repeating them. Write: a pair of pliers and a pair of scissors on the board. Point out that the words underlined are stressed. Draw a circle round a and of and tell the students that these words have a schwa / / / sound and that you never stress these words. Say the phrases, stressing the syllables underlined. Then play the recording and ask the students to listen and repeat the phrases. Make sure that they're pronouncing the phrases, using the correct stress.

Language

Present simple of have: question forms, short answers and negative forms
Go through the language box with the class. Tell students that you use have to talk about possessions and Do you have? to ask about possessions. Explain that in the present simple, you form questions with the auxiliary verb do and that when you use questions with it/he/ she, you use does not do. Point out the answer to the questions is Yes, I do./No, I don't. or Yes, it does./No, it doesn't. This is because it sounds softer and less abrupt than just Yes or No.
If students ask about Have you got, explain that this question is also used in British English, but Do you have is more common in American English. Note that have is used in this book because it's easier for students to acquire as it's used with the auxiliary do in the same way as other verbs in the present simple,
Tell students that they'll find more information showing all forms of have in the Grammar summary on page 100 of the Course Book.
4 Ask two confident students to read through the example first. Then demonstrate the activity, using the prompts, with another student. Take the part of A and ask the student to take the part of B. Substitute the information in the dialogue with one of the choices on the right and read the dialogue out.
Go round the class as students are practising their dialogues and make notes of any mistakes that they make. Go through these mistakes at the end of the activity with the class.
5 Put students in pairs. Ask them to design a multi tool for their work.

Extra activity

Students could then join another pair. The pairs ask the other pair about their multi tool, e.g. Does it have a screwdriver? Yes, it does/No, it doesn't, and make a rough drawing of it. They then check their drawings with the other pair.

Reading

6 Ask students to look at the picture of the Survival Tool. They could work with a partner to label the tool. Do not confirm answers at this stage. Point out that you say wrenches in American English for spanners and that wrench is another English word which includes a letter that isn't pronounced, i.e. the w isn't pronounced.
7 Ask students to read the product review about the Survival Tool and check their answers to 6.

1 screwdriver
2 ruler
3 blade regfece
4 can opener paffogfiob
6 cover
7 pick
8 bottle opener

Speaking

8 Ask students to look back at the pictures and information about the Survival Tool and the Multi Tool. They then ask and answer questions about the tools. Remind them of the pronunciation for a pair of

Vocabulary

9 Ask students to look at the pictures of the tools and to identify what tools they are. Then ask them to match the words with the parts labelled.
Point out that not all the parts of the hammer and the pliers have been labelled. Ask students to label the other parts (i.e. the shaft and handle of the hammer, and the handles of the pliers).

1 head 2 handle 3 shaft 4 blade 5 jaws
10 Ask students to think about some tools that they use at work and to draw them on a piece of paper. They label the parts with words from 9 and then make sentences as in the example about their tools. Point out that with it, you use has not have in the present simple.
Students could then describe their tools to each other in small groups, or you could get them to stand up in front of the class. Remind them to point to the parts as they're describing their tools.

Speaking

11 Ask students to look at the Product comparison form as you read out the two example sentences. Then ask them to make some similar comparisons for the three products. Remind students to use has for positive sentences and doesn't have for negative sentences.

Writing

12 Students now write a short comparison of the three products in 11. They could do this either in class or for homework.

When students have finished, you could ask them to compare their answers with a partner before you check their work.

2 Functions

Start here

1 Ask students to look at the pictures of the four different power sources and match them with the words. They can then compare their answers with a partner before you check with the class.

Write: electricity, adapter, dynamo and batteries on the board, underlining the syllable with the stress. Tell them that you don't pronounce the middle e in batteries. Then get students to repeat the words after you.

1 B 2 C 3 D 4 A

Reading

2 Ask students to look at the photos of the emergency radio in the web page advertisement in 4 . Ask them to label the radio with the words in the box. Do not confirm answers at this stage.

$3 \longdiv { 2 4 }$

Play the recording for students to listen and repeat the words. Make sure that they're pronouncing the words correctly. Write thermometer, antenna, alarm compass, handle, on the board underlining the stressed syllable in each word. Point out the unvoiced $/ \theta /$ sound in thermometer. Then get students to repeat these words.
4 Ask students to read the description of the emergency radio and check their answers to 2 . Point out that another word for antenna in British English is aerial.

1 clock 2 antenna 3 torch 4 thermometer 5 handle 6 compass 7 alarm

5 First, check that students understand the meaning of function, i.e. the purpose or job of something. Then ask them to look back at the photos of the radio and the reading text and explain the functions of the four parts of the emergency radio.

1 The AC adapter connects the mains electricity supply to the radio.
2 The handle turns the dynamo.
3 The dynamo produces electricity and charges the internal battery.
4 The solar panel changes the Sun's energy into electricity and charges an internal battery.

6 Students match the parts of the radio with their function. They can then compare their answers with a partner.

```
1g 2e 3a 4d 5h 6b 7c 8f
```

7 The students make sentences from the parts and functions in 6 as in the example.

1 The thermometer measures temperature.
2 The compass finds North.
3 The torch shines a light,
4 The clock tells the time.
5 The alarm makes a loud noise.
6 The solar panel makes electricity.
7 The handle turns the dynamo.
8 The antenna receives radio signals.

Language

Present simple: third person

Go through the Language box with students. Here students are presented with the present simple focussing on the third person singular. Tell them that in positive sentences you use the infinitive. You only change the form of the verb in the third person singular (he, she and $i t)$. Point out the example in the table and the $-s$ which is added to the verb. Don't worry too much if your students make frequent errors with this at this level as this is one of the most difficult things for learners to acquire, and will probably take them many years of practice. Note that in Unit 5 they will practise irregular spellings of verbs in the third person singular.
Point out the contracted form in the negative and encourage students to use doesn't when speaking as this sounds more natural. Remind them that you use does in questions and short answers with it.
Tell students that they'll find more information showing all forms of the present simple in the Grammar summary on page 101 of the Course Book.

Speaking

8 Go through the example question and answer with the students. Remind them that you use the same auxiliary in short answers as in the question.
Put students in pairs to take turns asking and answering questions, using the words from 6 .
9 Ask students to look at the pictures and match them with the words in the box.

1 tighten 2 loosen 3 grip 4 cut 5 drive in

10 You could remind students of the tools first by miming how you use them for students to guess what they are. For example, mime using a pair of scissors to cut some paper, and ask students what tool you're using.
Students then make sentences using the words from the three columns. Ask individual students to read out their answers, checking that they've added $-s$ to the verb where necessary.

A spanner tightens and loosens nuts and bolts.
Pliers grip bolts and wire.
A screwdriver tightens and loosens screws.
A chisel cuts wood and metal.
Scissors cut paper and string.
A saw cuts wood.
Hammers drive in nails,

Extra activity

Make dialogues, using the following words: spanner, pliers, screwdriver, scissors, chisel, clocks, solar panel and antennas to practise present simple forms.
A: What does a spanner do?
B: It tightens and loosens nuts and bolts.
A: What do pliers do?
B: They grip nuts and bolts.

Social English

11 Ask students to think of job titles that are useful for them in the work they do now, or for work they want to do in the future. Tell them to use their dictionaries to help them.
12 Ask students to read through the example dialogue. Then write What do you do? and Where do you work? on the board. Tell students that the words underlined are stressed, and the do you is never stressed in questions. These two words run together and are pronounced /d5\%/. Get the students to repeat the questions after you. Then point out that you use does in the question for he and she. If possible, allow students to walk around the class to find out information about the other students.
When they've finished, you could ask students about other members of the class in a feedback session.

3 Locations

Start here

1 A25
Write top, bottom, left and right on the board. Then draw a square. Point to the bottom of the square and ask students to say what part of the square it is. Then point to the other sides of the square and ask students to name the location. Keep the square on the board for 2.
Tell students that they're going to listen to a computer lesson. Play the recording for them to complete the dialogue with the words in the box. When checking their answers, point out the contraction Where's for Where is.

- It's at the bottom. On the left.
- It's on the right. At the top.

C25

A: OK, now put the cursor on the START button.
B: Where's the START button?
A: It's at the bottom. On the left. Do you see it?
B: Yes. Is that it?
A: Yes, that's correct. ... Now, move the cursor up to the CLOSE button.
B: Where's that?
A: It's an X. It's on the right. At the top.
B : Is that it?
A: Yes, that's it. Now click.

Vocabulary

2 Draw a circle in the left of the square on the board and ask: Where's the circle? And elicit On the left. Then rub it out and draw it again at the top of the box and elicit At the top. Then go through the Language box with the students.
Ask students to read the information in the box in the margin, then to look at the nine TV monitors and match them with their locations.
$1 \mathrm{G} \quad 2 \mathrm{I} \quad 3 \mathrm{H} \quad 4 \mathrm{D} \quad 5 \mathrm{~F} \quad 6 \mathrm{~B} \quad 7 \mathrm{~A} ~ 8 \mathrm{C} ~ 9 \mathrm{E}$

Reading
3 Ask students to look at the picture of the computer station. Ask them a couple of questions, e.g. Where is the scanner? (It's at the top on the right), Where's the keyboard? (It's at the bottom in the middle). Then draw their attention to the description of the computer station and tell them that there are six mistakes in the description about where the computer items are. Tell them to read through the description first. Then look at the computer station and find and underline the six mistakes in the text. They should then correct the information.

Students can compare their answers with a partner before you check them with the class. Point out that you can change the order of the information by saying Put the scanner on the right at the top, Put the computer on the left at the top, etc.

1 Put the scanner at the top on the teft right.
2 ... put the computer at the top on the right left.
3 Then put the DVD drive at the top in the middtebottom on the left.
4 ... put the printer at the bottomon the left top in the centre/middle.
5 Finally, put the keyboard at the bottom on the right in the centre/middle.
$6 \ldots$ and put the mouse at the bottom int the eentre on the right.

Extra activity

Tell students to ask and answer questions about where the TV monitors in 2 are, using the phrases in the Language box with a partner, e.g. A: Where's TV monitor F? B: It's in the centre on the left.

Language

4 Ask students to look back at the computer station in 3 and circle the sentence T (true) or F (false).

The statements are all true.

5 Ask students to look at the diagram and discuss the question.

You use ON the left to describe the general location of something.
You use TO the left OF to give the exact position of something in relation to another object. You name the object the thing is to the left of.

6 Students complete the sentences with the words in the box first, without looking back at 3 . When they've finished, they can look back at the computer station to check their locations are correct.

1 at, in, to, of, below
2 at, on, to, of, above

7 Ask students to look back at the computer station in 3 once more and make sentences about the locations of the objects listed.

1 The mouse is to the right of the keyboard. It's below Speaker 2.
2 The DVD drive is at the bottom on the left. The DVD drive is below speaker 1 .
3 The scanner is at the top on the right. The scanner is above speaker 2 .
4 The screen is in the centre. It's to the right of speaker 1 and to the left of speaker 2. It's above the keyboard and below the printer.

Extra activity

Students could work with a partner and get their partner to guess the object from the computer station by describing the location. If their partner guesses correctly, it's their turn to ask a question.
A: It's at the bottom in the centre.
B: The keyboard?
A: Yes. It's in the middle on the left.
B: The computer?
A: No. Speaker 1. It's in the centre ...

Task
8 Put students in pairs. Ask Student A to turn to page 113.
Ask students to read the instructions. Check that they know all the words. Tell them that the blank boxes represent the items in their list that are missing in their picture. Student A begins by asking Student B questions to find the locations of their items in their picture. Student A then writes the name of the missing item in the blank box. They then swap roles. Remind students of the phrases from the Language box on page 24, as well as the phrases from 6 before they start. Ask students to compare their finished pictures at the end of the activity.

Contents

1 Directions

Start here: labelling a jetpack man's movements with adverbs of direction
Completing a form about the directions planes and helicopters can fly
Reading: reading a text about planes and helicopters and checking answers
Language: can/can't/cannot + verb + adverb of direction. Interrogative of can. Short answer: Yes, it can./No, it can't
Completing sentences with can/can't
Speaking: practising dialogues
Task: preparing for reading - how many movements in an arm?
Reading: reading a text, checking answers
Labelling movements in a diagram
Listening: choosing between easily confused numbers (e.g. 19/90) in the form of angles

Task: answering questions about robot arm movements
Language: completing a text with is/isn't, has, can/can't about robot arm movements
Word list: about (= approximately), arm, axis, backwards/ forwards, degree (angle), diagonally, elbow, fly, move, pivot, rotate, rotation (receptive), shoulder, sideways, straight/vertically up/down, to the left/right, turn, vertical/ horizontal, up/down, wrist,

2 Instructions

Start here: quiz - choosing the correct speeds $(\mathrm{km} / \mathrm{h}$, $m p h, m / s, r p m)$
Listening: checking answers to the quiz
Dictating of speeds
Vocabulary: preparing for reading - labelling a diagram of a remote control transmitter
Task: preparing for reading - guessing what controls do to a model plane
Reading: checking answers from a manual for transmitter controls
Pronoun reference: it
Matching instructions with actions: Push the joystick up and the plane accelerates.

Speaking: practising dialogues with Can in interrogative Can the plane fly to the left? Yes, it can. You move the lefthand stick to the left.
Social English: asking what your partner can and can't do Word list: accelerate, antenna, ascend, descend, direction, handle, hour, joystick, kilometre, metre, mile, minute, per, RH/LH (left-hand, etc.), roll, rotation, second, slider, speed, switch, tilt,

3 Actions

Start here: preparing for reading - answering questions about a diagram of forklift truck controls
Reading: inserting letters (e.g. lever 1) next to controls in the text in an instruction manual
Matching pictures of truck movements with movements described in manual
Speaking: roleplaying a driving lesson - giving
instructions and acting them out
Writing: writing instructions for a job and drawing a diagram for it
Changing pairs of actions into When ... sentences: When you pull lever D backwards, the forks tilt up.
Task: telling partner the sequence of movements of a forklift truck
Word list: accelerator, brake, Do a U-turn. Drive forwards. fork, forklift truck, Go slowly, Go faster: lever, parking brake (receptive), pedal, Reverse. Reverse to the left. Reverse to the right. reverse (vb), right-hand/left-hand (attrib adjs), Slow down. steering wheel, Stop! To the left. To the right. Turn left. Turn right. Turn round.

Briefing

This unit deals with ways of communicating about directional movement, needed in a range of engineering fields and industries including robotics, mechatronics and transportation.

1 Directions

Section 1 introduces adverbs and adverbial phrases indicating direction of movement. This is done by examining the capabilities of different vehicles. Cars and other land vehicles can move forwards and backwards. They can also turn left and turn right. Turning left combines two directions: forwards + leftwards. Normal land vehicles cannot move directly sideways to the left or right.
A normal aeroplane can move forwards and turn left or right like a car, but it is not able to reverse (go backwards). In addition, it can move diagonally upwards (upwards at an angle) and diagonally downwards. These movements combine two directions: forwards + upwards/downwards. A vertical take-off and landing (VTOL) aircraft such as the Harrier Jump Jet can do everything a normal plane can do, but it has two additional directions: straight up (vertically up) and straight down (vertically down). The jetpack man on page 26 can move in the same directions as the VTOL; in addition, he can move sideways.
The most versatile aircraft is the helicopter, which can move in all the directions of an aeroplane and jump jet, and can do three additional movements: it can go sideways, it can reverse, and it can rotate on its vertical axis. (The vertical axis runs from the top to the bottom of the helicopter; the horizontal axis runs from the front to the back.) Planes and helicopters can rotate on their horizontal axis: this is also called rolling (see below). In addition helicopters can hover in the air (without moving in any direction). (Note that the variations upward, downward, forward and backward (with no -s ending) also occur in English, but in this book only the -s form is used in order to keep matters simpler for students.)
Section 1 also deals with robotic arms. Robotic engineers use the concept of degrees of freedom. A human arm has seven degrees of freedom, which means seven distinct directions: three in the wrist (up + down, sideways and rotating), one in the elbow, and three in the shoulder. The robot arm in 11 only has six degrees of freedom (the robot shoulder has one less than the human shoulder: it can rotate on a base and move up and down, but not sideways). However, it has one advantage over the human arm: the wrist and shoulder can rotate 360°, whereas the human versions have more limited angles of rotation.

2 Instructions

Section 2 introduces technical terms for directions of aircraft movements in 4; roll means rotation on the horizontal axis through the body of the plane; tilt is moving the front of the aircraft upwards or downwards; direction (also called yaw - see the Briefing note to Unit 11) is moving the front of the aircraft to the left or right. Some names of controls are also introduced: joystick, slider and switch. A slider (or slide control) is moved in one direction from side to side (or up and down) to increase or decrease a variable such as sound volume. A joystick can be moved in all directions. A switch has two positions: on and off. In the quiz in 1 , the word per is introduced when talking about speeds. If something travels at 1228 km per hour, it travels 1228 km in each hour.

3 Actions

Section 3 deals with directions of movement of a forklift truck and its controls. The forks can move up and down (the forks remain horizontal), and they can also tilt up and down (the front of the forks moves higher or lower than the back of the forks). The tilt control allows the forks to pick up and put down loads easily.

Movements of cars, planes and helicopters: http:// travel.howstuffworks.com/helicopter.htm
Helicopters: http://www.rc-airplane-world.com/how-helicopters-fly.html
Radio-controlled model aircraft: http://www. thirtythousandfeet.com/rc.htm
Forklift trucks: http://www.free-training.com/osha/ forklift/forkmenu.htm
Robotic arms: http://www.thetech.org/exhibits_ events/online/robots/contents
Jetpack man: http://en.wikipedia.org/wiki/Jet_pack

Teacher's notes

1 Directions

Start here

1 Ask students to look at the photo. Ask them what the man has on his back (it's a jetpack) and ask What can the man do? (Fly.) Then ask them to look at the words in the box which describe the jetpack man's movement. Make sure the students can pronounce all of the words correctly. The students then label the movements of the jetpack man with the words in the box.

1 up 2 sideways 3 backwards 4 down 5 forwards

2 Ask students to look at the boxes describing movement in the margin. Then ask them to think about planes and helicopters and what directions they fly in.
Put the students in pairs. Tell them to discuss the question and tick the boxes in the form according to which directions planes and helicopters fly. Do not confirm answers at this stage.

Reading

3 Ask students to read the text and check their answers to 2 . Then ask students if helicopters can turn on their vertical axis to check they understand rotate. Draw a simple diagram of this on the board if necessary.

Direction	Plane	Helicopter
forwards backwards	\checkmark	\checkmark
up and down sideways	\checkmark (diagonally)	\checkmark (straight)
		\checkmark

Language

Can

Go through the Language box with the class. Explain that you use can here to talk about ability, i.e. whether it is possible or it isn't possible to do something. You form sentences with can/can't + infinitive without to. You say It can fly forwards, not teean to fly forwards. You put can before the subject in questions: Can the plane fly sideways? and you use can for the short answer for the questions: Yes, it can./No, it can't. Point out the two negative forms: can't and cannot. Explain that you normally use can't when speaking and cannot for formal written English.
Point out that can is pronounced $/ \mathrm{k} 2 \mathrm{n} /$ in positive sentences and /kæn/ in questions. You pronounce can't /ka:nt/. Ask individual students to read out the sentences in the table and check that they're pronouncing can and can't correctly.
Tell students that they'll find more information on can in the Grammar summary on page 101 of the Course Book.
4 Ask students to complete the sentences with can and can't. Tell them to look back at the text in 3 to help them if necessary. They can then check their answers with a partner before you check them with the class.

```
1 can; can't
2 can't; can
3 can't; can
4 \text { can't; can}
```


Speaking

5 Put students in pairs. Tell them to take it in turns to ask and answer the questions about the movements of helicopters, rockets and planes. Go round the class checking students' pronunciation and making notes on any mistakes they make. At the end of the activity, go through any problems with the class.

Task

6 Pre-teach vocabulary for the parts of the body used in this activity. Hold out your arm in front of you and indicate that this is your arm. Point to your elbow and ask students what part of your arm it is. Then point to your wrist and shoulder and elicit what they are. Then ask students to repeat the words as you say and point to your own wrist, shoulder and elbow. Make sure students can pronounce the words correctly. Point out that wrist is another word which has a silent letter.
Now put students in pairs. Ask them to read the instructions and discuss the questions with their partner. Do not confirm answers at this stage.

Reading

7 Ask students to look at the diagram in the text and pre-teach the word pivot. Point to your wrist, and demonstrate how your hand can move from this point and tell the students that your wrist is an example of a pivot, i.e. your hand turns from it. Explain that forearm is the lowest part of your arm.
Ask students to read the text and check their answers to 6 .

1 three 2 three 3 one

8 Ask students to look back at the diagram in 7 and find the information in the text to label the movements with the words from the box.

1 move up and down
2 rotate
3 move sideways
4 move up and down
5 move up and down
6 rotate
7 move sideways

Listening

9

This exercise helps students to differentiate between numbers ending in -ty and -teen. Play the recording for students to choose the correct answer.
Remind students that the stress is on the last syllable when you say the numbers ending with-teen, e.g. nineteen, in isolation. Then explain that you put the stress on the first syllable in numbers ending in -ty, e.g. ninety, Play the recording again for students to repeat the numbers, and then get students to say both sets of numbers, emphasising the different stress on the numbers.

826

119 degrees.
240 degrees.
370 degrees.
4118 degrees.

Extra activity

Play bingo with numbers to practise differentiating between -teen and -ty numbers.
Ask students to choose three numbers from 13-19, and three numbers from the decades $30-90$ and write them down on a piece of paper. Call out numbers randomly, and make a note of the ones you've called. Ask students to tick the number if they hear them. The first student to tick all their numbers calls out Bingo. Check that this student has ticked their numbers correctly. If not, continue until someone has.

Task

10 Put students in small groups and ask them to look at the diagram of the robot arm in the text at the bottom of the page. They discuss the questions in their groups. Go round the class monitoring, but do not confirm answers at this stage.

Language

11 This exercise revises be and have and the modal verb can. Ask students to read the text about the robot arm and complete it with the words in the box. After you have checked their answers, they can then compare the text with the answers they gave to the questions in 10.
Answers to 10 :
1 six 2 a) the shoulder

Answers to 11:

1 is 2 has 3 is 4 has 5 can 6 can 7 can 8 is
9 has 10 can 11 isn't 12 has 13 can 14 can
15 can't

9 has 10 can 11 isn't 12 has 13 can 14 can 15 can't

2 Instructions

Start here

1 Tell students that they're going to do a quiz about speeds. Go through the abbreviations for speeds in the box in the margin with the class first. Then allow students a couple of minutes to do the quiz on their own. They can then compare their answers with a partner. Do not confirm answers at this stage.

Listening

2 -27

Play the recording for students to check their answers to 1 . Then ask students to say the correct speed out loud for each of the answers to 1.
Point out that with thousands, you write a comma after the thousands, e.g. 12,500. However, if the number has four figures, e.g. 2500 , you can write this number with or without a comma. In the Course Book, four digit numbers are written without a comma.
Tell students that in British English for numbers in their hundreds you say and, e.g. One hundred and fiffeen. However, in American English you say One hundred fifteen. Also explain that you can say a hundred or one hundred, and a thousand or one thousand.

1b 2b 3a 4a 5a 6a

827

1 A fast CD-ROM can rotate at 9800 revolutions per minute.
2 Sound travels at about 1200 kilometres per hour.
3 The maximum land speed is about 1228 kilometres per hour.
4 The maximum speed of a boat on water is about 154 metres per second.
5 The Earth rotates at 1000 miles per hour.
6 The Earth moves around the Sun at 67,000 miles per hour.
3 Put students in pairs. Ask students to write down some speeds, using revolutions, kilometres, metres and miles. Tell them not to show their speeds to their partner. After they've dictated their speeds, students can check that their partner has written the correct speeds down.

Vocabulary

4 Ask students to look at the diagram and tell you what it is (a transmitter for the model plane in the photo).
Demonstrate the movement of tilt and roll by moving your hand. Then ask them to label the remote control with the words in the box. Do not confirm answers at this stage. They will be checking their answers in the reading text on page 29.

Task

5 Put students in small groups to discuss the questions about the plane's movements. Go round monitoring and helping with vocabulary, but do not confirm answers at this stage.

Reading

6 Students look at the diagram of the transmitter on page 28 at the same time as they read the user manual. They then check their answers to 4 and 5 .

Answers to 4:

1 antenna 2 handle 3 joystick 4 switch 5 slider

Answers to 5:

LH joystick:

1 Push it up (away from you), the plane accelerates. Pull it down (towards you), the plane slows down.
2 Push it to the left, the plane turns left. Push it to the right, the plane turns right.

RH joystick:

3 Push it up, the plane descends. Pull it down, the plane ascends.
4 Push it to the left, the plane rolls to the left. Push it to the right, the plane rolls to the right.

Extra activity

Ask students to find the opposites in the text for the following words: slow down, roll left, away from you, ascends, pull.

7 Ask students to look at the pronouns circled in the text in 6 . Tell them to read the information in the sentences that come before these pronouns to help them find out what it refers to.

You could then ask them what it refers to in line 7 and line 9 .

1c 2 a

8 Ask students to look back at the text in 6 and the diagram of the transmitter in 4 to help them to match their actions with the plane's actions.

$$
1 \mathrm{~b} 2 \mathrm{~d} 3 \mathrm{a} 4 \mathrm{~h} \quad 5 \mathrm{c} \quad 6 \mathrm{f} 7 \mathrm{e} 8 \mathrm{~g}
$$

Speaking

9 Put students in pairs. Tell them to read the example dialogue and to make similar dialogues with the information from the table in 8 .

10 Put students in pairs. Ask them to look at the pictures and take turns to ask and answer questions about what they can or can't do.

Extra activity

Ask students to think of four or five more activities, and to write questions using Can ...?, e.g. Can you skateboard? They then walk round the class and find students who can do their activities. Tell them to make a note of their names.
At the end of the activity, you can ask a few students what their classmates can do.

Actions

Start here

1 Ask students to look at the diagrams of the forklift truck and its controls and answer the questions.

1 two 2 four 3 on the left

Reading

To revise movements, ask students to stand up. Give them instructions to move forwards, backwards, left, right, sideways, stand up and sit down. You could also pre-teach reverse at this stage.
2 Ask students to read the manual straight through, ignoring the spaces.
Now complete the first space with the class so that they know what to do. Ask them to read the information about the first control again: On the left is a lever. This is the direction lever (1 ___) , and ask them to look back at the diagram of the controls in 1 . Ask the students what letter the directional lever is (G) and tell them to write it down in the first space.
Students then do the rest of the exercise on their own. They can compare their answers with a partner before you check with the class.

$1 \mathrm{G} \quad 2 \mathrm{~A} \quad 3 \mathrm{~B} \quad 4 \mathrm{C} \quad 5 \mathrm{D} \quad 6 \mathrm{~F} \quad 7 \mathrm{E}$

3 Ask students to look at the pictures of the movements of the forklift truck. Point out the arrows showing the movements of the forks. Ask students what direction the forks in each of the pictures is moving in. Then tell them to look back at the manual and find and note down the description of the movements that matches the movements of the forklift truck in the pictures.

A the fork tilts down
B the fork tilts up
C the truck moves forward
D the fork moves down
E the truck reverses
F the fork moves up

Speaking

4 Find out how many students can drive a car. If there are students who can't, pair them up with a student who can. This student will be their driving instructor in the task.
Point out the note in the margin and explain that when you turn the car round to go in the opposite direction, you say do a U-turn. Go through a few of the instructions with the class first in order to pre-teach go slowly, go faster, by miming the instructions yourself as if you're driving a car, and then applying the brake gradually for slow down.

Put students in pairs. Ask them to read the instructions and the example. Tell them to stand up while they're doing this activity and position themselves next to each other to simulate the driving lesson. Student A then gives instructions for Student B to act out the instructions.
Go round the class, checking that the learner driver is following the instructions correctly,

Writing

5 Ask students to write short instructions for one of the jobs listed, like the ones in 4, and draw a diagram based on their instructions.
They could do this exercise either in class or for homework. They could then swap their instructions with a partner, for their partner to check before you check their instructions yourself.
6 Go through the example with the class so that they know what to do. Point out the comma in the sentence separating the two clauses. The students then write full sentences from the notes.

1 When you pull lever C backwards, the fork tilts down.
2 When you push lever B forwards, the fork moves up.
3 When you turn the steering wheel to the right, the truck turns right.
4 When you pull lever G backwards, the truck reverses.
5 When you press the brake pedal, the truck stops.
6 When you press the accelerator, the truck goes faster.

Task

7 Put students in pairs. Ask Student A to turn to page 115. Explain that they have both got the same pictures of the forklift truck but that they're in a different order. Tell students to read the instructions for their role.
Student B takes the role of the driving instructor first and gives Student A instructions to follow according to the order of their pictures. Student A follows the instructions and writes the correct sequence of the pictures in the box provided. They then swap roles.

Students A - the correct sequence of instructions is: $6,7,4,1,5,3,8,2$
Students B - the correct sequence of instructions is: 4, 8, 6, 3, 5, 1, 2, 7

Review Unit B

Answer key

11 Does John have the spanners?
2 Do the students have a holiday tomorrow?
3 Does the Multi Tool have a screwdriver?
4 Do these bikes have strong brakes?
5 Does the radio have an internal battery?
6 Do those houses have solar panels?

21 No, I don't have a car. I have a motorbike.
2 No, my brother doesn't have a DVD. He has a VCR.
3 No, the Multi Tool doesn't have scissors. It has a knife blade.
4 No, we don't have English today. We have Science.
5 No, my radio doesn't have batteries. It has a dynamo.
6 No, the pliers don't have plastic handles. They have metal handles.

31 The Multi Tool doesn't have a wrench. It isn't very useful.
2 We don't have an AC adapter. We can't switch on the computer.
3 I'm a technician, but I don't have my tools here. I can't repair your TV.
4 The electricity is off and we don't have any batteries. You can't use the radio now.

41 No, I can't.
2 No, he isn't.
3 Yes, it does.
4 No, they don't.
5 Yes, I am.
6 No, it doesn't.
7 No , I'm not.
8 Yes, they can.
$5 \mathbf{1}$ does 2 do $\mathbf{3}$ turns $\mathbf{4}$ produces 5 charge 6 use
$\mathbf{7}$ uses $\mathbf{8}$ has

61 jaws 2 handles 3 blades 4 handle 5 handle 6 shaft $\mathbf{7}$ blade 8 head 9 shaft 10 handle

71 A pair of pliers has two handles and two jaws.
2 A pair of scissors has two handles and two blades.
3 A spade has a handle, a shaft and a blade.
4 A hammer has a handle, a shaft and a head.

8 Five screwdrivers. They're at the top, on the left. Four spanners. They're at the top, in the middle/centre. One knife. It's at the top, on the right.
One hammer. It's in the middle/centre, on the left, below the screwdrivers.
Three chisels. They're in the middle/centre, on the right, below the knife.
One saw. It's in the middle/centre, below the hammer and the chisels.
Two pairs of pliers. They're at the bottom on the left, below the saw.
One pair of scissors. It's at the bottom, on the right, below the saw.
Two torches. They're at the bottom, on the right, below the pair of scissors.

9 The screwdrivers are to the left of the spanners and above the hammer.
The spanners are to the right of the screwdrivers and to the left of the knife. They're above the hammer and the chisels.
The knife is to the right of the spanners. It's above the chisels.
The hammer is to the left of the chisels. It's below the screwdrivers and above the saw.
The chisels are to the right of the hammer. They're below the knife and above the saw.
The saw is below the hammer and the chisels. It's above the pliers and the scissors.
The pliers are to the left of the scissors. They're below the saw.
The scissors are to the right of the pliers. They're below the saw and above the torches.
The torches are on the right of the pliers. They're below the scissors.

101 helmet 2 pliers 3 solar panels 4 nuts 5 antenna 6 dynamo
$11 \mathbf{1}$ are $\mathbf{2}$ do $\mathbf{3}$ do $\mathbf{4}$ is $\mathbf{5}$ does 6 is $\mathbf{7}$ does $\mathbf{8}$ does a works bam cis d comes \mathbf{e} am \mathbf{f} study g study \mathbf{h} is

12
$1 \mathrm{e} 2 \mathrm{~b} 3 \mathrm{f} 4 \mathrm{~g} 5 \mathrm{~d} \quad 6 \mathrm{~h} 7 \mathrm{c} 8 \mathrm{a}$
$14 \quad 1$ knife 2 build 3 butding 4 seissors 5 wrist 6 aseend 7 deseend 8 right 9 tighten
$15 \mathbf{1}$ slider 2 wheel 3 switch 4 display 5 button 6 lever 7 key 8 pedal

16 a printer, an AC adapter, a pair of speakers, a keyboard, an amplifier, a pair of headphones, a pair of earphones, some nuts, some bolts, a pair of pliers

171 This opener can open bottles, but it can't open tins.
2 These wrenches can't tighten the M12 bolts, but they can loosen the M5 nuts.
3 That antenna can receive radio signals, but it can't transmit them.
4 A rocket can fly straight up, but it can't reverse.
5 Passenger planes can't fly sideways, but they can turn left and right.
6 I can drive a car, but I can't operate a forklift truck.

18 The yellow square
$19 \quad 1 \mathrm{H} \quad 2 \mathrm{~A} \quad 3 \mathrm{G} \quad 4 \mathrm{~B} \quad 5 \mathrm{~J} \quad 6 \mathrm{E} \quad 7 \mathrm{C}$ 81 $9 \mathrm{D} \quad 10 \mathrm{~F}$

Projects

20 Students can do their research on the Internet or in a library and in their own language if they wish. They must then write their results in English.
Tip: Key the name of your industry into a search engine. Add other keywords such as technician, job, career.
21 Example: Construction Industry: structural engineer, quantity surveyor, site manager, architectural technician, etc.
Students can use a good dictionary or an Internet search engine.
Tip: To find the meaning of a word in Google, type definition and then the word.
multi- = many; multimedia = using many types of media (sound, pictures, film, text on screen)
therm- = heat; thermometer = instrument to measure heat
kilo- $=$ a measure of 1000 ; kilometre $=1000$ metres

Quick test answer key

Part 1: Vocabulary and grammar

11 b 2 a 3 e 4 d 5 c

21 a pair of scissors 3 a pair of pliers
2 a hammer 4 a spade
31 vehicle 2 computer 3 tool

41 A is at the bottom, on the right.
$2 B$ is at the top, on the left.
3 C is in the centre/middle, to the right of D .
51 have 2 doesn't 3 Do 4 don't 5 work 6 cut 7 can't 8 can't

61 is $\quad 4$ do 7 has
2 is 5 Does, have 8 Can

3 Do, have 6 doesn't 9 can't
71 Drive fast.
4 Do a U-turn.
2 Slow down.
5 Stop
3 Turn left.

Part 2: Reading and writing

Reading

$\mathbf{1}$ No, you don't.	$\mathbf{4}$ Yes, you can.
$\mathbf{2}$ Yes, you can.	$\mathbf{5}$ No, it doesn't.
$\mathbf{3}$ No, you can't.	

Writing

1 When you turn the key, the engine starts.
2 When you push the accelerator pedal, the car accelerates.
3 When you push the brake pedal, the car stops.
4 When you turn the steering wheel, the car turns left or right.
5 When you turn/switch off the engine, the car stops.

Review Unit B Quick test

\qquad

Part 1: Vocabulary and grammar

1 Match the words with the movements.
1 backwards

2 down
b)

3 forwards

4 sideways
d)

5 up
e)

2 Name the object. Use the words in the box.

```
a hammer a pair of pliers a pair of scissors
a spade
```

1 It has two blades and two handles. \qquad
2 It has a head, a shaft and a handle. \qquad
3 It has two handles, a shaft and two jaws. \qquad
4 It has a blade, a shaft and a handle. \qquad
(4 marks)

3 Add the headings in the box to the words.

```
computer tool vehicle
```

1
bicycle, car, motorbike, plane, truck
2
amplifier, monitor, mouse, printer, scanner
3 \qquad
knife blade, pick, saw, screwdriver, wrench

4 Use the words in the box and the correct prepositions to describe the positions of A, B, C and D in the square. You will need to use one of the words twice.

bottom right left top centre

1 A is \qquad the \qquad , \qquad the \qquad -.
$2 B$ is \qquad the \qquad the \qquad .

3 C is \qquad the \qquad the \qquad D.

5 Choose the correct word to complete the sentences.
a) I (1) has/have a new radio, but it (2) doesn't/don't have batteries.
b) A: (3) Do/Does you work at BMW?

B: No, I (4) don't/doesn't work at BMW. I (5) work/ works at Fiat.
c) These scissors can (6) cut/cuts paper.
d) I (7) can/can't find North with my compass.
e) Planes (8) can/can't fly backwards.

6 Complete the dialogue. Use all the words in the box.
can can't do do does doesn't have have has is is

A: Hello. (1) \qquad this shop open?
B: Yes, it (2) \qquad . Can I help you?
A: (3) \qquad you \qquad any Multi Tools?
B: Yes, we (4) \qquad . This is the new model.
A: (5) \qquad it \qquad a bottle opener?
B: Er, no, it (6) \qquad , but it (7) \qquad a can opener.
A: (8) \qquad it open bottles?
B: Sorry, no, it (9) \qquad -

7 Read the situation and then write the instruction. Use the words in the box.
do a U-turn drive fast slow down stop turn left

1 I need to go to the bank. It's 4.50 pm . The bank closes at 5.00 . \qquad -.
2 There's a slow car in front. \qquad -

3 The bank is in the road on the left. \qquad -
4 Oh, no, it isn't. It's in the road on the right. \qquad -
5 There it is, on your left. \qquad
(5 marks)

Part 2: Reading and writing

Reading

Read the text and answer the questions.

The new mobile phone

This mobile phone is ulta-slim and easy to use. There are lots of good things about the phone, but it also has some faults. It has a touch screen. a 5 megapixal camera, a video camera and a music player. You can send pictures, sounds and text in your messages, but you can't print the photos. It has a calendar and a calculator. You can connect to the Internet, but you can't play games on the mobile phone. It has a radio but it doesn't have an alarm. It has a beautiful cover. The cover is available in red, blue, green and white.

1 Do you press keys on the mobile phone?

2 Can you take videos?

3 Can you print your photos from the mobile phone?

4 Can you read your emails on the mobile phone?

5 Does it have a radio alarm?
(5 marks)

Writing

Write five sentences to explain what happens when you use these parts of a car. Begin each sentence with When you and add the and punctuation.
the key - the engine start the accelerator pedal - the car the brake pedal - the car the steering wheel - left/right the engine - the car stops
1
2

3

4
5 \qquad
(5 marks)

Contents

1 Heating system

Start here: put heads on arrows showing direction of flow in solar heating system
Reading: description of system; checking arrows
Identifying reference pro-forms: it, here
Putting events into correct sequence in flow chart
Language: present simple singular with $-s$ and es ending and plural
Prepositions of movement: into, out of, to, from, around, through (a system)
Vocabulary: synonyms: enter/go into, leave/go out of, rise/go up, sink/go down
Task: explaining a diagram of a system to group
Writing: writing an explanation of the system Word list: cold, enter, enter/go into, flow, heat (tr), inlet, leave, leave/go out of, open, pipe, solar, panel, pull, pump, push, rise, rise/go up, shower head, sink, sink/go down, stay, system, tank, valve, warm, water (adj)

2 Electrical circuit

Start here: the basic electrical circuit symbols; labelling an electrical circuit
Listening: labelling diagram of a solar panel system. Matching items with their specifications
Task: explaining how the current flows in three situations Reading the rest of the text: explaining how the circuit works in different situations: if Sun isn't shining, if battery is full, etc. Checking answers to previous task
Language: zero conditional, positive and negative: If the battery is full, the current doesn't flow into the battery. Task: how does the controller work? Making notes Completing a text with the correct form of the verb Word list: Amp, Ampere hour, battery, cable, conductor, control, controller, convert, current, DC (direct current), empty/full, fuse, lamp, negative, positive, solar panel, shine, short-circuit (vb), stop (tr), store (electricity), switch, terminal, Volt, Watt

3 Cooling system

Start here: quiz: common temperatures: numbers + Celsius/Fahrenheit
Listening: checking answers
Pre-reading: labelling diagram of a car cooling system
Reading: car cooling system. Checking labels
Identifying what the pro-forms $i t$, here and this in the text refer to
Speaking: making true sentences about a cooling system Task: working out how a passive air cooling tower works
Writing: completing a description of a passive air cooling tower
Social English: present simple used to express regular routine
Word list: blow, bottom/top, become (hot/cool, etc.), chimney, connect, control, cool, engine, fan, flow, hole, hose, pass, push, pipe, radiator, spray (n), thermostat, tower, water pump

Briefing

This unit deals with explaining how fluids move (or flow) around a system, and how electrical current moves around a circuit. A fluid can be a liquid (such as water) or a gas (such as air).

1 Heating system

In Section 1 the reading text on page 36 describes a solar water heating system (a thermosiphon), in which water flows through pipes, a tank and a solar water panel. The solar water panel is a flat water tank with a transparent front surface which allows the sun's rays to heat the water. The pressure of the mains water supply (from outside the house) pushes the water up to the tank and then around the system. Once the water is in the tank (which must be above the water panel), gravity helps it to flow down into the water panel. The flow is controlled at the inlet and at the shower outlet by a valve.
The water heating system on page 37 is similar to the thermosiphon on page 36. The only difference is that here the water tank is below the panel, and so a pump is needed to push water from the tank up to the panel.

2 Electrical circuit

Section 2 deals with the flow of electric current around a circuit. Current can only flow when there is a closed circuit between a power source (such as a battery or mains electricity supply) and an appliance (such as a lamp). When you open a switch the circuit is broken, so the current cannot flow. When you close the switch, the current can flow. The circuit diagram at the top of page 38 shows some common elements of a circuit. The solar panel on page 38 is different from the solar water panel on page 36 . The panel here contains photovoltaic cells which convert sunlight into electrical current. The current then flows through a controller and either into the battery or directly into the lamps. The controller detects when the battery is full or empty and checks if there is any current from the solar panel. It can direct the current from the panel either to the battery or straight to the lamps. When there is no current from the panel, it directs current from the battery to the lamps. When the lamps are not needed, it directs current from the panel into the battery.
In the diagram of the controller on page 39, the current flows from the top of the panel along the red wire. The controller detects whether the battery is full or empty.
(1) When it is full, the controller closes switch A. This short-circuits the panel, which means that the current simply flows through switch A and back into the panel, so no current can flow into the battery. Instead, current flows from the full battery through switch B (which is also closed) into the lamp. (2) When the battery is low or empty, the controller opens switch B (and switch A) so that no current can flow from the battery into the lamp. Instead, current flows from the panel into the battery.

3 Cooling system

In Section 3 on page 40 the topic is a car cooling system. The diagram here is very schematic to make it as simple as possible. It does not show the fan or the belt which drives the water pump. (For a more detailed diagram, see the web site below.) The thermostat controls the temperature of the water. When the engine is cold, the thermostat prevents water from flowing through the radiator, which helps the engine to warm up quickly. When the engine is warm, the thermostat allows the water to flow.
The passive air conditioning system on page 41 operates without a power source (except for the pump). The air flows through the house by the simple principle that hot air rises and cool air sinks.

Solar water heaters and passive air conditioning: http://www.i4at.org/library.html
Thermosiphons: http://www.solarserver.de/lexikon/ schwerkraftanlage-e.html
Circuits: http://www.allaboutcircuits.com/vol_1/index. html
Controller: http://www,solar-power-answers.co.uk/ solar_cell_controller.html
Water heaters: http://home.howstuffworks.com/waterheater.htm/printable
Car cooling system: http://www.howstuffworks.com/ cooling-system.htm

Teacher's notes

1 Heating system

Start here

1 Ask students to look at the diagram of the house. Point out the hot and cold water pipes and the various parts labelled. Pre-teach the word flow. Tell students that rivers flow from the mountains to the sea. Draw a simple diagram of this on the board.
Put students in small groups for them to discuss which way the water flows in the system. Tell them to draw arrows on the diagram to show the direction of the flow. Do not confirm answers at this stage.

Reading

2 Ask students to read the text and check the directions of the arrows they drew in 1 .
3 Ask students to look at the words circled in the text in 1 and go through the example with the class. Tell them that it refers to an object that is mentioned before in the text and here refers to a place. Point out that they should read the information in the sentences that comes before the words circled to help them find out what they refer to.

1 b 2 a 3 c 4 c

4 Ask students to look at the flow chart of the water system at the bottom of the page. Explain that the boxes are not in the correct order. Tell them to redraw the flow chart, putting the boxes in the correct order. They can then compare their flow charts with a partner before you check with the class.

Language

Present simple

Go through the Language box with the students. Here students are presented with the present simple used to talk about facts. Remind them that you normally add an $-s$ to the infinitive in the third person singular. Then point out the irregular spelling for go - goes, and pass - passes. Explain the spelling rule that with verbs ending in $-0,-s s$, -sh and -ch, you add es.
Tell students that they'll find more information about forming the present simple in the Grammar summary on page 101 of the Course Book.

Vocabulary

5 Ask students to look at the diagrams and label them with the prepositions in the box.

1 into 2 out of 3 to 4 from 5 through 6 around
6 Students complete the table with the verbs in the box. Tell students to refer back to the diagram and text in 1 to help them.

```
1 rise 2 sink 3 enter 4 leave
```

7 Ask students to complete the sentences using the verbs from the table in 6 in the correct form.

1 enters 2 leaves 3 rises 4 sinks

Task

8 Put students in pairs. Ask Student A to turn to page 114. Ask students to read the instructions. Tell Student B to listen carefully while their partner explains their system. Tell them to ask questions to make sure they understand how the system works and to draw a simple diagram of the system. They then swap roles.
Finally, ask students to check their drawings with their partner and to correct them if necessary.

Writing

9 Students write an explanation of the system they described to their partner in 8.
If you think your students will need extra support in writing an explanation of their systems, write the following on the board as prompts.

- The main parts of the ... are ... and ...
- The pump is (above/below) the
- The cold water (enter/leave) the ... through the
- Inside the ... , the ... (heat/cool) the
- The ... (push/pull) the water to the
- The (hot/cold) water (rise/sink) to the (top/bottom) of the
- The hot water (enter/leave) the ... through the Students could do this writing activity in class or for homework.

2 Electrical circuit

Start here

1 Students could work in pairs or on their own to label the symbols in the circuit diagram with the words in the box. When they've finished, they can then check their answers on page 109 in the Reference section.
Write conductor, terminal, negative and positive on the board, underlining the stress in the words. Ask students to repeat the words after you. Remind them that you don't pronounce the e in battery.

1 lamp 2 conductor 3 negative 4 battery 5 positive 6 switch 7 terminal 8 fuse

Listening

2 Q28
Students could label the diagram with the words in the box first. Then play the recording for students to listen and check.

1 solar panel 2 controller 3 cables 4 lamps
5 battery

228

[$\mathrm{L}=$ Lecturer; $\mathrm{S}=$ Student $]$
L: Right. Now let's look at this diagram of the circuit, up here. Can you see it clearly? On the left, here, you can see a solar panel. OK? The solar panel collects the sunlight and changes it into electricity. And here, on the right, you can see three lamps. These three long things. OK? And there, between the panel and the lamps, you can see a controller and a battery.
S : Excuse me, sir. Which one is the controller?
L: Well, the controller's at the top, OK? And of course the battery's at the bottom, here, below the controller. And finally, you can see some electrical cables or wires. The cables run from the panel, through the controller, into the battery and also into the lamps.

3 - 29

Remind students that they studied abbreviations for electricity in Unit 1. Ask students to tell you what V, W and A mean, and if they can tell you what $D C$ (direct current) and Ah (Ampere hour(s)) mean. Remind them that there is a list of abbreviations on page 106 in the Reference section.
Play the recording for students to listen and match the items with their specifications,

$$
1 \mathrm{~d} 2 \mathrm{c} 3 \mathrm{e} 4 \mathrm{a} 5 \mathrm{~b}
$$

1829

[L = Lecturer; S = Student]
L: OK? So to summarise, here again, these are the main parts of the system. A sixty watt solar panel; ... a five amp controller; ... a twelve volt one hundred ampere hours battery; and three twelve volt eight watt lamps.
S : Excuse me, what kind of electrical current is it?
L: It's a direct current - DC. Is that clear now?

Task

4 Put students in pairs and ask them to look back at the diagram in 2. Tell them to draw arrows on the diagram to show the current flow in the three different situations. Do not confirm answers at this stage.

5 Ask students to look at the note in the margin before they read the manual for the solar power systems. Then ask them to check their answers to 4.

Language

Zero conditional

Go through the Language box with the class. Here students are presented with the zero conditional. Explain that you use the zero conditional to talk about something that is always true. You use the present simple in the conditional clause and also in the result clause. Write the following example on the board:
(conditional clause) (result clause)
If the sun shines, the current flows from the panel.
Tell students that you always use a comma after the conditional clause. (Note that you can put the result clause first, and in this instance you don't use a comma. You could also use when instead of if in these sentences.)
Tell students that they'll find more information showing all forms of the zero conditional in the Grammar summary on page 104 of the Course Book.

Extra activity

Write these sentences on the board and ask students to complete them:
I If the sun shines, and the lamps are on, (current / flow / panel / lamps)
2 If the sun doesn't shine, and the lamps are off, ... (current/flow / panel)
3 If the battery is full, (current / not / flow / panel / battery)

Task

6 Put students in pairs and ask them to look at the diagram of the controller at the bottom of the page. Students discuss how it works and make notes. Do not confirm answers at this stage.
7 Tell students to read the text explaining how the controller works and to complete it choosing the correct verb in the brackets in the correct form. They can then compare the text with the notes they made in 6 .
$\mathbf{1}$ closes $\mathbf{2}$ doesn't flow $\mathbf{3}$ opens 4 doesn't flow

3 Cooling system

Start here

Warmer

You could quickly revise numbers here. Write the following numbers on the board:
$183,157,147,50,30,15,13,0,2.5,3.75$
Then write a couple of sums on the board:
$30+157=2.5-15=$
Ask What's thirty plus one hundred and fifty-seven? and elicit the answer (=187). Then ask: What's two point five minus fifteen? $(=-12.5)$. Ask students to write five sums for their partner, using the numbers on the board in any combination. Tell them to also make note of the answer. They dictate the sum to their partner who writes it down and then checks the answer with their partner. Go round the class as they're doing this making sure that they're saying the numbers correctly.
1 Before students start the quiz, ask them to read the note in the margin about Fahrenheit and Celsius. Point out that most countries use Celsius (= centigrade). However, some countries, including the US, use Fahrenheit. Then ask students to read the notes in the margin.
Students do the quiz about the normal temperatures for things. They then compare their answers with a partner. Do not confirm answers at this stage.

Listening

$2 \longrightarrow 30$

Play the recording for students to check their answers to 1 . Then check with the class by asking individual students to read out the answers. Make sure that they are pronouncing the temperatures correctly.

```
1a 2b 3b 4a 5b 6a
```


C 30

1 A: Turn down that thermostat, please. The water's too hot for a shower. The correct temperature is about 60 degrees.
B: Fahrenheit?
A: No, Celsius, of course.
2 A: This refrigerator is too cold. Turn the temperature up to about 4.5 degrees.
B: Fahrenheit?
A: No. That's too cold. 4.5 degrees Celsius.
3 A: That freezer's too warm. Turn the temperature down to zero degrees.
B: Zero degrees Celsius?
A: No, that's too warm. Zero degrees Fahrenheit. That's the same as minus eighteen degrees Celsius.
4 A: Do you know the record for the coldest air temperature in the world?
B: No.
A: It's minus 89 degrees.

B: Fahrenheit?
A: No, Celsius.
B: Where is it?
A: In Antarctica.
5 A: And the hottest temperature in the world. Do you know that?
B: No.
A: It's 136 degrees.
B: Celsius?
A: No, no. Fahrenheit.
B: Where is it?
A: In Libya.
6 A: The car engine is too hot.
B: Why? What's the correct temperature?
A: About 110 degrees.
B: Is that Fahrenheit?
A: No, Celsius.

Reading

3 Ask the students to look at the diagram of the car cooling system and to label it with the words in the box. Do not confirm their answers at this stage.
4 Ask the students to read the text and check their answers to 3 . When checking students' answers, make sure that they're pronouncing the words correctly and that they're putting the correct stress on radiator and thermostat, and are pronouncing the $/ \mathrm{c} /$ / sound in engine.
5 Ask students to look at the words circled in the text in 3 and go through the example with the class. Point out that

1 engine 2 thermostat 3 top hose 4 radiator 5 bottom hose 6 water pump

This refers to an object that is mentioned before in the text. Tell them that they should read the information in the sentences that come before the words circled to help them find out what they refer to.

$$
1 \mathrm{~b} \quad 2 \mathrm{c} \quad 3 \mathrm{~b} \quad 4 \mathrm{a}
$$

Speaking

6 Ask students to make true sentences from the words in each column. Pre-teach the word blow. You could then do an example with the class to make sure that they know what to do. Then tell them to check their answers by looking back at the text in 3 .

1 The water pump pushes water around the engine.
2 The thermostat controls the temperature of the water.
3 The two hoses connect the radiator to the engine.
4 The radiator cools the hot water from the engine.
5 The fan blades blow air onto the radiator.
6 Cool water sinks to the bottom of the radiator.
7 Hot water rises to the top of the engine.
8 Water flows through the two hoses.

Task

7 Ask students to look at the diagram of the cooling system and to look carefully at the direction of the flow in the stages 1-11. Then put students in small groups to discuss how the cooling system works and what happens at each of the stages. Go round the class monitoring and helping with any language problems.

Writing

8 Ask students to look at the text explaining how the cooling system works and tell them that the bracketed numbers refer to each of the stages (1-11) in the diagram in 7. Go through the first two stages in the text with students so that they know what to do. Then ask them to complete the rest of the text with the verbs and prepositions in the box. Remind them to look back at the diagram to help them with each stage.

l through; to	$\mathbf{7}$ flows around
2 leaves; through	$\mathbf{8}$ flows out of; into
$\mathbf{3}$ enters; through	$\mathbf{9}$ heats
$\mathbf{4}$ cools	$\mathbf{1 0}$ rises
$\mathbf{5}$ sinks	$\mathbf{1 1}$ leaves; through
$\mathbf{6}$ enters	

Social English

9 -31

Ask students to read the introduction to the recording. Then play the recording while students read the dialogue.
Tell students to read the note in the margin and remind them that you pronounce do you/ $\mathrm{d} /$ / in present simple wh- questions. You could play the recording again, and pause after the questions for students to repeat them.

B 31

[D = Dan; J = Jack]
D: I work in the electronics workshop every Thursday and Friday.
J: When do you attend lectures?
D: Every Tuesday morning.
J: What do you do on Tuesday afternoons?
D: I do my practical work then.

10 Put students in pairs to practise the dialogue.
11 Put students in pairs to discuss their own weekly schedules. Go round the class listening to their discussions and helping them with any problems.

Extra activity

For students who are having problems with this teaching point, you could give them some extra practice by putting the following on the board or on an OHT. They can then practise similar dialogues to the one in the book.

	Morning	Lunch time	Afternoon	Evening
MON	Work in lab	Practise football	Study in library	Write lab reports
TUE	Attend lectures	Play guitar with group	Do practical work	Read course books
WED	Meet tutor	Have lunch with friends	Prepare projects	Watch film at college
THU	Work in electronics workshop	Learn English		
FRI	Work in electronics workshop			Go out with friends

Materials

Contents

1 Materials testing

Start here: saying what materials the climbing equipment is made of. Designing tests for the materials
Listening: tutor testing a material
Listening and completing a dialogue in the present continuous
Language: present continuous
Vocabulary: matching verbs used in testing materials with pictures: bend, stretch, etc.
Language: gap-filling exercise practising present continuous
Speaking: describing all the actions of people exercising in a gym, using the present continuous: D is pullling the bar down.
Asking and answering questions about the actions in the gym: What's D doing? Is he pushing the bar up? No, he isn't, He's pulling the bar down.
Students guess the sport from their partner's mime. Are you diving? No, I'm not diving.
Word list: bend, break, compress, cut, cycle, drop, hang (tr), heat, hold, lift, melt, nylon, pick up, polycarbonate, pull, push, rope, run, scratch, stretch, strike, sit, touch

2 Properties

Start here: describing the properties of materials: You can't burn it (easily).
Vocabulary: common industrial materials - matching photos of things with the material they're made of Speaking: determining and practising stressed syllables in names of materials
Listening: checking and practising stress in names of materials
Language: made of
Practising of What's this made of?/What are these made of? and answers
Vocabulary: matching property adjectives (rigid, etc.) with descriptions (You can't bend it.)

Matching property adjectives with opposites
Reading: reading a text about racing car parts, materials and properties. Completing a table
Word list: aluminium, ceramic, concrete, diamond, fibreglass, graphite, nylon, polycarbonate, polystyrene, rubber, steel, titanium
Property adjectives - flexible/rigid, hard/soft, light/ heavy, strong/weak, tough/brittle, corrosion-resistant, heat-resistant

Parts of car - engine, frame, nose cone, piston, radiator, spoiler, tyre, wheel, wing
Materials: alloy, composite, cromoly, metal

3 Buying

Listening: a voice mail message - completing a form with name, number and email address
Listening and writing down email and web addresses Speaking: dictating email and web addresses
Listening: checking and correcting numbers and letters Speaking: roleplay - practising the phone call
Task: buying equipment over the 'phone: asking about size, colour, material, price: What's your name?/Could you spell/repeat that, please? Is that sixteen or sixty? What's the product name/number? What colour/size/material would you like/do you need? Do you want to pay in dollars? How many would you like/do you need?
Social English: ways of starting a phone call - checking the person is on the line, greetings, asking how they are Practising short phone calls
Word list: @ (at), backpack, dash, dot, forward slash, helmet, hyphen, jacket, rope product number, surname, underscore

Briefing

This unit deals with ways of communicating about materials, their properties and how to test them. This is relevant to a range of industries including chemical engineering, plastics processing, mechanical and automobile engineering, aerospace, building and construction.

1 Materials testing

Section 1 introduces the names of actions which are carried out when testing materials for their strength or resistance to different forces. The surface of a hard material resists cuts and scratches, so you would test hardness (and its opposite, softness) by trying to scratch it. A tough material doesn't break easily when you strike it or drop it from a height; a brittle material breaks easily. Some materials have compressive strength (see Book 2); they don't deform (change shape) or break when you compress (squeeze) them. Materials with tensile strength (see Book 2) don't deform or break when you stretch them (pull them apart). Materials with both tensile and compressive strength don't deform or break when you bend them: they are rigid; if they bend slightly but do not break they are flexible. Heatresistant materials resist heat: they don't deform or burn when you heat them, and corrosion-resistant materials don't corrode when they are exposed to moisture or chemicals.

2 Properties

Section 2 introduces some common industrial materials and their properties. The property of a material is its characteristic feature, or special strength. For example, one property of rubber is that it does not conduct electricity. Natural (or organic) materials include wood and rubber. A ceramic is a material produced by grinding rocks to powder and then heating it to a high temperature. Many ceramics are very hard, tough and heat-resistant. Plastics (also called polymers) have many different properties: polystyrene, in a plastic foam form called EPS (expanded polystyrene) is a rigid and lightweight plastic used in packaging of electrical goods because it can resist impact and changes of temperature; polycarbonate is a strong, stiff, hard, tough, transparent plastic, used for instance in the lenses of sunglasses; nylon is a tough plastic with good thermal and chemical resistance; it can also be processed into a fibre (or thread) with good tensile strength which can be used for making climbing ropes. A composite is a strong material made by mixing a polymer with a ceramic or natural material: fibreglass and graphite are composites. Metals and alloys (mixtures of two or more metals) are common engineering materials: aluminium and titanium are examples of pure metals; steel and cromoly are alloys. Titanium is used in many industrial, aerospace and marine applications: it is as strong as steel, but about half as dense, which makes it much lighter. It is also corrosion-
resistant. Aluminium is even lighter, only one-third the density of steel. Cromoly (chromium-molybdenum steel) is a steel alloy: it is weldable (can be welded), formable (can be shaped), strong, ductile and tough. It is used in making bicycle frames.
The reading text on page 45 has examples of made of (when the object is composed of one material) and made from (when the object is composed of a combination of different materials). This distinction is worth pointing out to students, although it is not taught specifically in this book, since it is not a consistent rule. It is sometimes possible to use made of and made from interchangeably for both meanings.

3 Buying

Section 3 gives practice in using the phone when buying and selling goods, particularly when giving (or listening to) details such as names, phone numbers, product numbers, email addresses and web pages. In 4 on page 46, students are helped to distinguish between numbers ending in -teen and -ty, which are easily confused. (The advice is to put syllable stress on -teen but never on -ty.) There is also practice in asking someone to repeat or spell a word that may have been misheard, and then to check that you have heard it correctly.

[^2]
Teacher's notes

1 Materials testing

Start here

Warmer

Write wood, metal and glass on the board and point at some objects in the class and ask: What's it made of?

1 Ask students to look at the photo of the mountaineer. Ask what they can see in the picture. Ask: What's the man wearing on his head? (a helmet) and What's he using to pull himself up the mountain? (a rope).
Put students in pairs. Focus their attention on the helmet and rope and ask them to answer the first question. Tell them they'll find the name of the materials they're made of in the box.
Then ask them to design tests for the helmet and rope for mountain climbing, using the words in the box. Tell them to draw diagrams to illustrate their test. They can then compare their tests with another pair.

Listening

2 \& 32
Tell students that they're going to listen to a lecture about testing the strength of mountaineering rope. Ask them to read the three questions first. Then play the recording for them to answer the questions.

1 Nylon.
2 He's pulling the rope and he's stretching it.
3 No, it isn't.

P32

[$\mathrm{L}=$ Lecturer; $\mathrm{T}=$ Trainees]
L: Today, we're doing a tensile strength test for this mountaineering rope. OK. Is everyone ready? Can you see and hear me clearly?
T: Yes.
L: All right, now listen and watch carefully. The rope is made of nylon. Now I'm pulling the rope. I'm stretching it. Is it breaking?
T: No, it isn't.
L: That's right. It isn't breaking.
3 Ask students to look at the dialogue between the lecturer and the trainees. They listen to the recording and complete the dialogue. Then ask students to compare their answers with a partner before you check with the class.

1 pulling 2 stretching 3 breaking 4 isn't
5 isn't breaking

Language

Present continuous

Go through the Language box with students. Explain that the present continuous tense is used to describe what's happening at the time of speaking. You form the present continuous with the verb be and the present participle. Point out the contractions for $I a m-I^{\prime} m$ and is not-isn't, and remind them to use these contracted forms when speaking.
Students will need to be aware of the spelling rules when changing the infinitive to the -ing form:
You normally simply add -ing to the verb, e.g. break - breaking, pull - pulling.

For verbs ending in e, you drop the e and add -ing, e.g. strike - striking.
For verbs ending in a vowel then a consonant, you double the consonant and add-ing, e.g. cut-cutting, drop - dropping.

Point out that the auxiliary be comes before the subject in questions, Is the rope breaking? and that you use the same auxiliary in the short answer: No, it isn't.
Tell students that they'll find more information showing all forms of the present continuous in the Grammar summary on page 102 of the Course Book.

Vocabulary

4 Ask students to look at the pictures of the different actions and match them with the verbs in the box.

$$
\begin{aligned}
& 1 \text { scratch } 2 \text { compress } 3 \text { stretch } 4 \text { bend } 5 \text { strike } \\
& 6 \text { drop } 7 \text { cut } 8 \text { heat }
\end{aligned}
$$

Language

5 Tell students that in the following text the lecturer is giving a description about testing other materials. Pre-teach melt, by asking what happens to ice when you heat it. Then ask students to complete the lecturer's description, using the words in brackets in the present continuous tense. Refer them to the note in the margin to remind them of the spelling rules in the present continuous. Finally, when you go through the students' answers, make sure that you check their spelling.

1 'm heating
2 isn't melting
3 'm putting
4 is dropping
5 's striking
6 isn't bending
7 are compressing
8 isn't breaking
9 is hanging
10 aren't stretching

7 Students can either ask and answer questions about the picture in 6 across the classroom, choosing another student to answer their question, or you can put the students in pairs to do the exercise.
Point out that when they ask the question, the information in the question should be incorrect so that the student they are asking can correct it.
You could then ask students if they go to the gym and to tell their partner what exercises they do there.
8 Put students in pairs. Do an example first so that they know what to do. Mime a sport and ask a student to guess what it is. Then put students in pairs to take turns to mime a sport and to guess what the sport is.

Speaking

6 Ask students to look at the picture of the gym and ask them to describe what the people in the gym are doing using the words in the box.

Example answers:

A She's sitting on an exercise bike. She's cycling.
B He's running.
C She's pushing the pedals on the machine.
D He's pushing the bar up. (or He's pulling the bar down.)
E He's touching his toes.
F and G They're holding/lifting weights.
H He's sitting on the floor. He's stretching his leg.

Extra activity

Ask students to change the spelling of the verbs in the box from the infinitive into present participles, e.g. bend - bending.

2 Properties

Start here

Revision

Students work in pairs. They revise some of the vocabulary from the previous lesson by instructing the class to do some actions, using the verbs from that lesson e.g. stretch your leg, touch your toes, bend your elbow, hold your book above your head, etc.
1 Put students in pairs. Ask them to look at the materials in the box and discuss the question with their partner. Tell them to use the words in the example answer to help them to describe the properties of the materials.

Vocabulary

2 Ask students to look at the photos. Students don't have to know the names of the items in this exercise, as they only need to identify the materials the items are made of. They match the items with the materials in the box. Students can then compare their answers with a partner before you check with the class.

1 ceramic 2 polycarbonate $\mathbf{3}$ polystyrene 4 fibreglass 5 graphite 6 titanium 7 rubber 8 nylon 9 aluminium 10 steel

Speaking

3 Explain to students that the words have been broken up to show where the syllables come in the words. Remind students that English is a stressed-timed language and that it's important to stress the correct syllable in words to be understood. Ask students to underline the stressed syllable for each word. Tell them to say the words out loud as this may help them to choose the correct syllable to underline. Do not confirm answers at this stage.
4 C3 33
Play the recording for students to check their answers to 3. Then play it again for students to repeat the words. Make sure that they're using the correct stress. Finally, point out the British English and American English spellings in the box in the margin.

1 nylon 2 graphite 3 ceramic 4 polycarbonate 5 aluminium 6 polystyrene 7 titanium 8 fibreglass

Language

What's ... made of? It's made of ...
Go through the Language box with students. Remind students that you use the verb be + made of to ask and talk about the material of things, e.g. What's the helmet on page 42 made of?
5 B34
Play the recording once through for students to listen and read the dialogue.
Tell students to underline the stressed syllables in ceramic and polycarbonate. Point out that of is pronounced $/ 20 /$ in a sentence and is not stressed. Then play the recording again, pausing after each sentence for the students to listen and repeat.

Q 34

A: What's this made of?
B: It's made of ceramic.
A: What are these made ol?
B: They're made of polycarbonate.
6 Put students in pairs. Ask them to take turns to choose photos from 2 and make similar dialogues to the one in 5 . Tell students to point to the photos in 2 when asking the question.

Extra activity

Students work in pairs. They describe a couple of objects they have and talk about what they are made of. Tell them to look up the word for any materials they don't know in their dictionaries.

Vocabulary

7 Ask students to match the sentences. They can check their answers with a partner before you check with the class.

$$
1 \mathrm{~d} 2 \mathrm{c} 3 \mathrm{a} 4 \mathrm{e} 5 \mathrm{~b}
$$

8 Students match the adjectives 1-5 with their opposite adjective a-e.
Then ask students to repeat the adjectives after you, making sure that they're pronouncing the gh in tough with an /f/sound -/tsf/, and pronouncing the g in rigid with a /d3/ sound -/rid3id/.

1d 2a 3e 4c 5 b

Extra activity

Ask students to look back at the photos in 2. They choose one of the objects and describe the material it's made of using the words from 7 and 8 . Their partner guesses the object they're describing. (See 2, on page 60, for a list of the items shown.)

Reading

9 Ask students to look at the photo of the Formula One car and the diagram. Point out the wings and spoiler in the inset diagram. Pre-teach some of the vocabulary from the text: point out the nose cone, wheels, tyres, and frame for them on the photo and pre-teach the word piston if students don't know it. Then go through the notes in the margin below.
Ask students to read the text and complete the table below it. They can then check their answers with a partner before you check with the class.
Point out that adjectives are used in front of nouns, e.g. The nose cone of the vehicle is made of strong, light fibreglass. When adjectives are in a sentence with the verb be, they go after the noun, e.g. Many of the materials in the car are light, but very strong.

1 fibreglass
2 strong, light
3 fibreglass
4 hard
5 aluminium
6 strong, light
7 rubber
8 tough
9 ceramic
10 heat-resistant
11 cromoly
12 light, tough and rigid
13 aluminium (coated with ceramic)
14 corrosion-resistant

Extra activity

Students could write a short text about something they own, describing what materials it's made of and what the properties of the materials are. Remind them to put the adjectives before the noun, except when they're using the verb be.

3 Buying

Listening

Warmer

Go through some vocabulary used in email and web addresses. Make sure that students know what dot, dash, underscore and slash are. You could get them to do the following matching activity.
1 go dot fly
a) go-fly
2 go dash fly
b) go_fly
3 go underscore fly
c) go/fly
4 at go fly all one word
d) go.fly
5 go forward slash fly
e) ©gofly

1 235
Tell students that they're going to listen to a voice mail message. Ask students to look at the form first so that they know what information they need to listen for. Play the recording for students to complete the form. Play it a second time pausing after each piece of information to give students time to write it down. They can then check their answers with a partner before you play it a final time.

Name: Manuel Vargas

Phone number: 00349466389
Email address: mvargas17@xtreme_sports.co.es
Message: (Please send) catalogue of sports equipment

035

Hello, This is Manuel Vargas. That's V-A-R-G-A-S. My phone number is double oh, 3494 double 6389 . I'll repeat that: double oh, 3494 double 6389 . Please send me your catalogue of sports equipment. My email address is mvargas17@xtreme_sports.co.es, I'll say that again, mvargas 17 that's M-V-A-R-G-A-S seventeen all one word ... at ... xtreme underscore sports, that's spelt X-T-R-E-M-E underscore S-P-O-R-T-S dot co dot E-S.

2 \&36
Ask students to look at the example in the table. Tell them they will hear the email and web addresses being read out and that they need to note down the written form for the addresses. Play the recording. After each address, pause the recording for students to write the address down. They can then check their answers with a partner. Then play the recording a final time.

1 waleed@sports.com
2 adam@city.co.uk
3 theowalcott@goalfeast.com
4 c.ronaldo@back-of-the.net
5 www.toyota.com/customer-support
www.orascom.com.eg/sales_1

836

1 waleed at sports dot com
2 adam at city dot co dot UK
3 theo walcott, that's T, H, E, O then W-A-L-C-O-T-T at goalfeast, that's G-O-A-L-F-E-A-S-T, all one word dot com
4 C dot ronaldo, that's R-O-N-A-L-D-O at back-of-the net, that's B-A-C-K dash O-F dash T-H-E dot net
5 WWW dot toyota, that's T-O-Y-O-T-A dot com forward slash customer dash support
6 WWW dot orascom, that's O-R-A-S-C-O-M dot com dot E-G forward slash sales underscore one

Speaking

3 Put students in pairs. Ask Student A to turn to page 114 and Student B to turn to page 118. They create four email and web page addresses from the different components and then take it in turns to dictate their addresses to their partner. They then check their partner's answers.

Listening

4 - 37

Tell students that they're going to listen to a phone conversation in which one of the speakers is taking down the other person's details. Play the recording for students to complete the questions. Refer students to the note in the margin to remind them how to pronounce numbers ending in ty and -teen.

1 repeat 2 spell 3 Is that 4 Is that

837

A: What's your surname, please?
B: It's Lint.
A: Could you repeat that, please?
B: Lint.
A: Could you spell that, please?
B: L-I-N-T.
A: Is that T or D?
B: It's T. T for teacher.
A: Thanks. And what's the product number?
B: It's seventeen dash three oh five.
A: Is that 17 or 70 ?
B: Teen. Seventeen. One seven.
A: Right. Thanks.

Speaking

5 Students now practise the phone call with a partner. They take it in turns to be the caller and the person taking down the caller's details.

Task

6 Put students in pairs. Ask Student A to turn to page 116. Ask students to look at the website advertisement and read the instructions. Students then choose three items from the advertisement they want to buy and circle them on the form. They then take it in turns to phone up each other to order them. Refer students to the useful language box in the margin to help them ask questions.
Tell students to make notes of the order on the order form and then to check they have the correct information on the form with their partner when they've finished.

Social English

7

C38

Put students in pairs. Ask students to look at the dialogues numbered 1,2 and 3. Explain that Mike is phoning his friend John and that these are three different versions of the same telephone call. Play the recording for students and ask them to read the conversations at the same time.
Point out some useful language for answering the phone. Ask them to look at the three columns and tell them to:
1 find the most formal way to answer the phone. (Hello. John Davis here.)
2 find the phrase you use when you want to speak to someone on the phone. (Is that John?)
3 find three phrases you can use to tell someone who you are on the phone. (It's Mike. This is Mike. It's me.)
4 find two phrases to greet someone. (How are you? How are things?)
Then ask students how you can reply to these greetings. (OK, thanks. Fine, thanks. Great, thanks.)

238

[$\mathrm{J}=\mathrm{John} ; \mathrm{M}=$ Mike]
1 J : Hello?
M: Hello. Is that John?
$\mathrm{J}: Y$ Yes?
M: It's Mike.
J: Oh hi, Mike.
M: Hi. How are you?
J: OK, thanks. How are you?
M: Fine, I want to ask you ...
2 J : Hello?
M: Hello. Is that John?
J : Yes. Is that Mike?
M: Yes, it's me. Hi. How are you?
J: Fine, thanks. How about you?
M: I'm fine. Would you like to ...
3 J : Hello. John Davis here.
M: Oh hi, John. This is Mike.
J: Hi, Mike.
M : Hi. How are things?
J: Great, thanks. How are you?
M: Good. I'm phoning you to ...
8 Put students in pairs and ask them to use their own names and practise the phone calls, taking it in turns to play the part of Mike and John.

Answer key

11 Grip the nail. Use a pair of pliers.
2 Pull out the nail.
3 Drive in the nail.
4 Loosen the bolt.
5 Tighten the bolt.
6 Measure the wood.
7 Cut the wood.
8 Put on the goggles.
9 Put the bar in the vice.
10 Strike the bar in the vice.
11 Bend the bar in the vice.
12 Take the bar out of the vice.
13 Take off the goggles.
14 Open the box.
15 Put the goggles in the box.
16 Close the box.

21 He's gripping the nail. He's using a pair of pliers.
2 He's pulling out the nail. He's using a pair of pliers.
3 He's driving in the nail. He's using a hammer.
4 He's loosening the bolt. He's using a spanner.
5 He's tightening the bolt. He's using a spanner.
6 He's measuring the wood. He's using a tape measure.
7 He's cutting the wood. He's using a saw.
8 He's putting on the goggles.
9 He's putting the bar in the vice.
10 He's striking the bar in the vice. He's using a hammer.
11 He's bending the bar in the vice.
12 He's taking the bar out of the vice.
13 He's taking off the goggles.
14 He's opening the box.
15 He's putting the goggles in the box.
16 He's closing the box.

31 Water doesn't boil at $32^{\circ} \mathrm{F}$. It freezes.
2 Hot water doesn't sink to the bottom of a tank. It rises to the top.
3 Cool air doesn't rise to the top of a room. It sinks.
4 Hot air doesn't sink to the bottom of a room. It stays at the top.
5 The Sun's rays don't cool the water in the solar panel. They heat it.

41 work 2 enters 3 pushes 4 does 5 become 6 flows $\mathbf{7}$ heat $\mathbf{8}$ rises 9 passes 10 Does 11 have 12 doesn't 13 stays 14 open 15 flows

51 solar panel 2 pump 3 fan 4 thermostat

61 'm pressing; isn't going
2 's pulling; aren't rising
3 're pushing down; isn't slowing
4 'm sliding; aren't tilting
5 's pulling; isn't reversing
6 're moving; isn't going

71 break 2 bend 3 doesn't break easily 4 can break it easily 5 bend easily

8

rise \neq sink	push \neq pull
enter \neq leave	open \neq close
into \neq out of	tough \neq brittle
heavy \neq light	hard \neq soft
strong \neq weak	to \neq from
go in \neq go out	flexible \neq rigid
inlet \neq outlet	go down \neq go up

91 boils 2 freezes 3 rises 4 sinks 5 melt 6 stretches

10
1 polycarbonate 2 rubber 3 ceramic 4 aluminium

$\mathbf{1}$ strikes	$\mathbf{6}$ are pulling
$\mathbf{2}$ pull	$\mathbf{7}$ isn't stretching
$\mathbf{3}$ presses	$\mathbf{8}$ is pressing
$\mathbf{4}$ scratch	$\mathbf{9}$ isn't breaking
$\mathbf{5}$ is striking	$\mathbf{1 0}$ are scratching

Projects

13 \& 14 At the end of every Review unit is a project. Students can use a good dictionary or an Internet search engine.
Tip: to find the meaning of a word in Google, type definition and then the word.
sol $-=$ sun; solar $=$ connected with the Sun poly- = more than one; polytechnic $=$ a college that offers a variety of courses

Quick test answer key

Part 1: Vocabulary and grammar

11 through 2 from, to 3 around 4 out of

21 light
2 heat-resistant
3 hard, corrosionresistant

4 tough, flexible
5 rigid
6 strong
$\begin{array}{lllllll}3 & \text { a } 3 & \text { b } 4 & \text { c } 2 & \text { d } 6 & \text { e } 1 & \text { f } 5\end{array}$
$4 \mathbf{1}$ enters 2 rises $\mathbf{3}$ controls $\mathbf{4}$ heats $\mathbf{5}$ cools $\mathbf{6}$ flows

51 If the Sun shines, the current flows into the lamps.
2 If you stretch this nylon rope, it doesn't break.
3 If the water is cold, it sinks to the bottom.
4 If you heat the ceramic, it doesn't burn.
5 If the ice melts, the water rises.
$6 \quad 1$ 're driving
4 A : are, doing
2 isn't sitting
B: 'm diving
3 'm dropping, isn't breaking
$7 \quad 1 \mathrm{e} \quad 2 \mathrm{f} \quad 3 \mathrm{~b} \quad 4 \mathrm{c} \quad 5 \mathrm{~d} \quad 6 \mathrm{a}$

Part 2: Reading and writing

Reading

150% carbon fibre composite and 20% aluminium
212% composites and 50% aluminium
3 It's environmentally friendly. It can travel at the same speed as other planes, but uses less fuel.
4 It's light, strong and corrosion-resistant.
5 The fuselage and the wings

Writing

Sample answer

The automatic fire sprinkler system controls and puts out fires. The main parts are pipes with a spinkler head and a fusible link (a heat sensitive element). The pipes contain water under pressure. The location of the system is in the walls and ceilings of the buildings.
How it works: When the temperature reaches $68^{\circ} \mathrm{C}$, the fusible link melts and the sprinkler opens. Water flows from the pipes to the sprinkler head and then it flows out of the sprinkler head.

Review Unit C Quick test

Total \qquad 150

Part 1: Vocabulary and grammar

1 Underline the correct words.

1 Cold water enters the system through/up the inlet.
2 Hot water flows from/in the tank to/up the shower head.
3 The pump pushes water around/to the engine.
4 The hot air goes into/out of the chimney and leaves the house.

2 Describe the properties of these materials.
1 Polystyrene is I \qquad -.
2 Ceramic is h \qquad $-r$ \qquad _.

3 Titanium is h \qquad and c \qquad $-r$ \qquad -.
4 Rubber is $t \ldots$ and f \qquad -.
5 Concrete is r \qquad -.

6 Nylon is s \qquad .

3 Match the sentences in exercise 2 with the sentences a-f below.
a) It doesn't corrode easily. \qquad
b) You can stretch it. \qquad
c) It doesn't burn. \qquad
d) It doesn't break easily. \qquad
e) It isn't heavy. \qquad
f) You can't bend it. \qquad
(6 marks)
4 Complete the sentences with a verb from the box, using the correct form of the present simple.

```
control cool enter flow heat rise
```

1 The hot water \qquad the system.
2 Hot air \qquad to the top of the room.
3 The thermostat \qquad the temperature in the room.
4 The Sun \qquad the water in the panel.
5 The fan \qquad the air in the room.
6 Hot water \qquad out of the shower head.

5 Make sentences with the prompts using if. Add punctuation in the correct place.
1 the Sun / shine / the current / flow / into the lamps

2 you / stretch / this nylon rope / it / not break

3 the water / be / cold / it / sink / to the bottom

4 you / heat / the ceramic / it / not burn

5 the ice / melt / the water / rise
(5 marks)
6 Complete the sentences and the question, using the correct form of the present continuous.
1 They \qquad (drive) the car down the road.
2 Where's Ali? He \qquad (not sit) in front of his computer.
3 Look. I \qquad (drop) the weight on the plastic block. It \qquad (not break).
4 A: What \qquad you \qquad (do)?
B: I \qquad (dive) into the swimming pool.
(6 marks)
7 Match the questions with the answers.
1 Is that Jamal?
a) I work in the shop.
2 When does Frank go
b) Fine. Thanks.
to college?
c) Graphite.
3 How are things?
d) Yes, I am.
4 What's it made of?
e) Yes, it is.
5 Are you swimming?
6 What do you do on
f) On Thursday evenings.

Saturday afternoons?
(6 marks)

Part 2: Reading and writing

Reading

Read the text and answer the questions.

THE DREAMLINER

The Dreamliner is Boeing's new environmentally friendly jet. It can travel at the same speed as other jet planes, but uses 20\% less fuel. This is because it uses new materials. Fifty per cent of the plane is made of a carbon fibre composite and only 20% of the plane is made of aluminium. By contrast, other commercial aircraft use 12% composites and 50% aluminium. The skin of the fuselage and the wings are almost completely made of the carbon fibre-reinforced plastic. The material is very light and strong, and it is corrosion-resistant. Many smaller components of the plane are made of similar materials.

1 What material is most of the Dreamliner made of?

2 What materials are other planes made of?

3 Why is the Dreamliner made of this material?

4 What are the properties of this material?

5 Name two parts of the plane that use the material.
(5 marks)

Writing

Write a description of this system, using the notes and the flow chart below.

Name of system	automatic fire sprinkler system
Function	controls and puts out fires
Main parts	pipes with sprinker head and a fusible link (a heat sensitive element). The pipes contain water under pressure.
Location	walls and ceilings of buildings

(5 marks)

Specifications

Contents

1 Dimensions

Start here: quiz about the Millau Bridge
Listening: checking answers to the quiz from a TV interview
Identifying parts of a bridge in the photo
Listening and completing a specification chart about a bridge: dimensions
Vocabulary: noun/adjective: height/high, etc.
Completing sentences with nouns or adjectives
Language: How high is it? It's 100 metres high.
Speaking: writing questions based on the specification chart about the Millau Bridge
Asking and answering questions about the Millau Bridge
Task: asking about the dimensions of a bridge and completing a specification chart
Word list: cable, cable-stay bridge, deck, deep/depth, high/ height, inner, long/length, material, outer, pier, pylon, span, stucture, suspension bridge, wide/width

2 Quantities

Start here: quiz about world's highest buildings: name and height
Listening: checking answers to the quiz
Reading: matching frequently asked questions (FAQ) about Taipei 101 to answers. Area, volume and weight units
Language: countable and uncountable nouns. How much/ many? some, any
Completing a dialogue about buying things in a shop with
How much/many? some, any
Making dialogues about buying things in a shop using information from a table
Word list: aluminium, bag, base, cement, elevator, footprint (= area), glass, glue, kilo, litre, oil, packet, paint, reinforced concrete, steel, storey, superglue, tin, tonne, tube

3 Future projects

Start here: Saying what's in the picture and describing how it moves
Listening to a discussion about a (future) transatlantic tube and completing a specification chart
Language: will/'ll/won't and question form to predict a future fact or event
Disagreeing with and correcting statements using will
Reading: producing a specification chart from an interview about the future Europe-Africa Bridge
Speaking: asking and answering questions about the specifications of the bridge - How long will the bridge be?
Roleplay based on project schedule for the bridge: When will you start the project? We'll start it in 2026.
Social English: discussing how things will change in the next 20 years
Word list: attach, build, complete, compressed air, connect, construct, design, diesel, fix, foundation, lay, magnetism, make, project, put, Transatlantic, tube, vaccuum

Briefing

This unit deals with ways of specifying dimensions and quantities, relevant to a range of manufacturing and construction projects. Specifications are used when ordering or buying equipment.

1 Dimensions

Section 1 looks at the specifications of some major bridges, the Millau Bridge in France, the Rion-Antirion Bridge in Greece and the Akashi-Kaikyo Bridge in Japan. The French and Greek bridges are examples of cablestay (or cable-stayed) design, and the Japanese bridge is an example of a traditional suspension design. In fact a cable-stay bridge is a special type of suspension bridge. (Other common types of bridge not mentioned here are the beam bridge and the arch bridge.) Bridges have a strong horizontal structure, the deck, normally made of steel, which carries road or rail traffic. In beam and arch bridges, the deck rests on two or more supporting structures, called piers or columns. In suspension and cable-stay bridges, the deck is suspended by cables from tall structures called towers or pylons, which rest on the piers or columns. The photograph on page 53 shows the tall steel towers of the Akashi-Kaikyo Bridge resting on concrete piers just above the water level. The photo of the Millau Bridge on page 52 shows tall pylons above the deck resting on tall piers (or columns) below the deck. A span is the distance between two piers or columns. The height and width of the central (or inner) span of a bridge is very important, because ships or other traffic may have to pass through it.

2 Quantities

In Section 2 the focus is on high-rise buildings. How are the world's tallest buildings decided? The criteria used by the Council on Tall Buildings and Urban Habitat are that (1) a 'building' must be intended for residential, business, or manufacturing purposes, and have floors or storeys, so that a tower or mast would not be included; and (2) the height is measured from the road level of the main entrance to the structural top of the building. This can include a narrow spire which is part of the construction, but does not include TV or radio antennas, or flagpoles which are added to the building. This second rule is why the Taipei 101 is considered to be taller than the Sears Tower: Taipei 101 has a spire built into the structure but the Sears Tower has a TV antenna added to the top. High-rise buildings need lifts (or elevators in AmE) to reach the top. The footprint of a building (or a piece of equipment) is the area of its base.

3 Future projects

Section 3 looks at possible projects well into the future. It has to be said that the Transatlantic MagLev Tube and the Europe-Africa Bridge may never actually be built. At the moment they are only ideas or possibilities. Magnetic levitation transport, or maglev, is a form of transportation that suspends, guides and propels vehicles (especially trains) using electromagnetic force. The train hovers above, and moves over, the magnetic rail. This method can be faster than wheeled transport systems, potentially reaching speeds comparable to jet aircraft $(900 \mathrm{~km} / \mathrm{h})$. The highest recorded speed of a maglev train (by 2007) is $581 \mathrm{~km} / \mathrm{h}$, achieved in Japan in 2003. A vacuum in the proposed transatlantic tube will eliminate air friction and the train could potentially travel at over $6000 \mathrm{~km} / \mathrm{h}$. The Europe-Africa Bridge on page 57 may never be built because of the difficulties of building such a long bridge, and the dangers of high winds. An alternative possibility being considered by engineers is to dig a tunnel below the Mediterranean to link Africa with Spain.

Rion-Antirion Bridge: http://www.roadtraffic-technology.com/projects/rion-antirion/
Millau Bridge: http://bridgepros.com/projects/Millau_ Viaduct/
Akashi-Kaikyo Bridge: http://www.tfhrc.gov/pubrds/ julaug98/worlds.htm
Bridge design: http://science.howstuffworks.com/ bridge.htm/printable
Tallest skyscrapers in the world: http:// skyscraperpage.com/diagrams/
MagLev trains: http://en.wikipedia.org/wiki/Maglev_ train
Transatlantic maglev tube: http:// www.popsci.com/popsci/science/ $5 e 610 \mathrm{~b} 4511 \mathrm{~b} 84010 \mathrm{vgnvem} 1000004 \mathrm{eecbcedrcrd}$.html Europe-Africa Bridge: http://www.opacengineers.com/ index.php?menu=projectsheet,Gibraltar

Teacher's notes

1 Dimensions

Start here

1 Ask students to look at the photo of the bridge and answer the questions. Do not confirm answers at this stage.

Listening

2

1639

Tell students that they're going to listen to part of a TV programme about the bridge in the photo. Tell them to listen to the recording and check their answers to 1 .
Then ask them if they know anything more about the bridge. (They may mention that it's the world's highest road bridge. It links Paris with the Mediterranean. It was opened in December 2004 and it was designed by the British architect Norman Foster.)

1 The Millau Bridge.
2 It's in the south of France,
3 It's 336.4 m above the river Tarn.

339

This is a photograph of the Millau road bridge. That's Millau, spelt M-I-L-L-A-U. It's a beautiful bridge and it's very high. In fact, it's one of the highest bridges in the world. It's in the south of France and it crosses the river Tarn. The bridge is three hundred and thirty-six point four metres above the river.
3 Put students in pairs. Ask them to look at the photo of the Millau Bridge again and to point to the features that they can see.

All of them

Extra activity

Ask students to match the parts of the bridge with their definitions.
1 cable a) part of the bridge the cars drive on
2 deck
b) the distance from one end of the bridge to the other
3 pier
c) a tall tower that holds heavy wires

4 pylon
d) a thick, strong metal rope

5 span
e) a tall, strong column which holds a bridge up
$4 \longdiv { 4 0 }$
Ask students to look at the specification chart for the Millau Bridge. Play the next part of the TV recording for the students to complete the chart. Point out the notes in the margin and check that they are pronouncing millimetre correctly. They can compare their answers with a partner and then check the answers with the audio script on page 124.

1 cable-stayed 2 December 20043 steel
$\begin{array}{llllll}4 \text { reinforced concrete } & 58 & 6342 & 7204 & 87 & 990\end{array}$
$10246 \quad 112.46 \quad 1232$

2.30

[$P=$ TV presenter; $E=$ Engineer $]$
P : Yes, the total height of the Millau road bridge is 336.4 metres above the river Tarn. Now I'm talking to the chief engineer of the bridge. So, can I check with you? Three hundred and thirty-six point four is the total height from the top of the pylons to the river, is that right?
E : Yes, that's right. That's the total height. The road deck itself is 246 metres above the river. Then the pylons, or towers, rise another 90 metres above the deck.
$P: I$ see. And how wide is the river valley at the bridge?
E : Well, the valley is almost 2.5 kilometres wide. In fact, the bridge is 2460 metres long, or 2.46 kilometres.
P : And how long are the spans?
E. They have different lengths. The bridge has two outer spans and six inner spans. The two outer spans are 204 metres long and the six inner spans are 342 metres long.
P: How wide is the road deck?
E: It's 32 metres wide. It has four lanes of traffic.
P: And what's the bridge made of? It's really beautiful, and it looks very light.
E: Yes, it looks light because it is light. It uses the minimum material. But it's also very strong. The cables and the road deck are in fact made of steel. The seven piers, of course, are made of reinforced concrete.

Extra activity

For extra support you could photocopy the following text and hand it out to students for them to check their answers.

The Millau road bridge in southern France is very beautiful. It's also one of the highest bridges in the world. It's a cable-stayed bridge, and it has seven piers. The bridge uses the minimum material. It looks very light, but in fact it's very strong. The cables and deck are made of steel, and the piers, or columns, are made of reinforced concrete.
The bridge carries the Paris-Barcelona motorway over the valley of the river Tarn. Here the valley is very wide (about 2.5 km) and deep. The total height of the bridge above water level is 336.4 metres. The six central or inner spans are 342 metres long, and the two outer spans have a length of 204 metres.
The road deck is 246 metres above the water level, and the pylons, or towers, rise another 90 metres above the road deck. The deck is 32 metres wide, and 2460 metres long. It carries four lanes of traffic.

Vocabulary

5 Pre-teach depth. Draw a cross section of a river on the board and a double headed arrow from the river bed to its surface. Tell students that this is the depth of the river. Students complete the table with the missing adjective and nouns. Tell them to look back at the specification chart in 4 to help them.
Check their answers by asking a student to say the adjective, e.g. high, and another student to call out the noun: height.
Make sure that they're pronouncing the $/ \theta /$ sound at the end of length, depth and width. Point out the silent letters gh in high and height, and that the vowel sound in high, height and wide is /ai:/, but in width it's /1/.

Adjective high	long	deep	wide
Noun	height	length	depth

6 Students complete the sentences with the noun or adjective in brackets.
Remind students that adjectives with be go after the noun. To help them, you could write the following on the board: the bridge is 2 km long $=$ the bridge has a length of $2 \mathrm{~km}=$ the length of the bridge is 2 km . They can refer to this as they do the exercise.

```
1 width }2\mathrm{ long }3\mathrm{ depth 4 high 5 deep 6 length
7 wide 8 height
```


Language

How high is it? It's 100 metres high.

Go through the Language box with the class. Explain to students that when asking about dimensions of things you use How + adjective.
When answering the question, remind students to put the adjective after the verb be.

Speaking

7 Students make similar questions to the ones in the Language box about the Millau Bridge, using the information in the specification chart in 4 . They could also ask other types of questions as well, e.g. What are the cables made of? How many piers are there?, etc.
8 Put students in pairs. They take turns to be the TV presenter and engineer, asking and answering their questions about the Millau Bridge from 7.

Task

9 Put students in pairs. Student B turns to page 118.
Ask Student B to look at the diagram of the Akashi-Kaikyo Bridge and information about it, and ask Student A to look at the photo of the same bridge and the specification chart to go with it, which they need to complete. Student A then asks their partner questions about the bridge to complete their specification chart.
Students then change roles. Student A turns to page 114 where there is a diagram and information about the RionAntrion Bridge. Student B asks Student A questions in order to complete their specification chart on page 118.

Student A

Akashi-Kaikyo Bridge: specifications	
Type of structure	Suspension
Country	Japan
Piers (number)	2
Central span (length)	1991 m
Deck (above water)	65 m
Deck (length)	3911 m
Water (max depth)	110 m
Water at main pier (depth)	45 m

Student B

Rion-Antirion Bridge: specifications	
Type of structure	Cable-stayed
Country	4
Piers (number)	560 m
Span (length)	52 m
Deck (above water)	2252 m
Deck (length)	26.2 m
Deck (width)	115 m
Pylon (above deck)	

2 Quantities

Start here

Warmer

Ask students to name the tallest building they know of and to tell the class where it is and its approximate height, i.e, how tall they think it is, if they can. You could prompt them to say It's about ... metres high.

1 Students do the quiz. Explain that these are pictures of some of the tallest buildings in the world and tell them that they are still building a few of them. Students read the names of the buildings and write the correct picture number and the approximate height for each building. They can then discuss their answers with a partner. Do not confirm answers at this stage.
g 41
Play the recording for students to check their answers to 1 .

A Picture 6; height 445 m
B Picture 5; height 448.2 m
C Picture 3; height 485 m
D Picture 7; height 442 m
E Picture 4; height 452 m
F Picture 1; height 508 m
G Picture 2; height 492 m

341

Picture 1 is Taipei 101 in Taiwan. Its height is 508 metres.
Picture 2 is the Shanghai World Financial Centre in China. Its height is 492 metres.
Picture 3 is the Abraj Al Bait Towers in Saudi Arabia. Its height is 485 metres.
Picture 4 is the Petronas Towers in Malaysia. Its height is 452 metres.
Picture 5 is the Federation Tower in Russia. Its height is 448.2 metres.
Picture 6 is the Dubai Towers in Doha, Qatar. Its height is 445 metres.
Picture 7 is the Sears Tower in the USA. Its height is 442 metres.

Reading

3 Ask students if they know any more information about the buildings in 1 .
Explain to students that the footprint of a building is the area of the base of a building and ask them to read the notes in the margin. Tell students that you can say floor or storey. Then ask them to read the FAQs (Frequently asked questions) and match the questions to the answers. They could then compare their answers with a partner before you check with the class.

$1 \mathrm{D} \quad 2 \mathrm{~F} \quad 3 \mathrm{C} \quad 4 \mathrm{~B} \quad 5 \mathrm{E} \quad 6 \mathrm{~A}$

Extra activity

You could ask students to find the answers to the frequently asked questions listed for the other buildings in 1 on the Internet for homework and check their answers at the beginning of the next lesson.

Language

Countable and uncountable nouns

Go through the Language box with students. Explain that countable nouns are things which can be counted. You can use $a / a n$ and numbers with these nouns, e.g. a nut, one nut. Countable nouns also have plural forms, e.g, some nuts/three nuts, Uncountable nouns are things such as liquids and materials, e.g. water, cement, etc. which can't be counted. They don't have plurals and you can use some, e.g. some water. However, when liquids or materials are in containers, such as in a bag, you can count the containers, so you use countable nouns: three bags of cement, two bottles of water, etc.
Explain that in Wh-questions, when you ask about quantities, you use many for countable nouns and much for uncountable nouns, and you use any in Yes/No questions. (Note that you can also use some in questions when the question is a request.)
Tell students that they'll find more information on countable and uncountable nouns in the Grammar summary on page 104 of the Course Book.
4 Before students start, write How many ...? and How much ...? on the board. Say: I need some paint and prompt them to ask the question How much paint do you need? Then say: I need some nails and prompt them to say: How many nails do you need? Say a few other items that you need and prompt the students to ask How much or How many questions.
Ask students to look at the photo of the hardware shop. Tell them to complete the conversation the two men are having in the shop with the words in the box. Point out that they need to use a word or a phrase for each blank.
You could then get students to practise the dialogue in pairs.
When they finish, go through some useful phrases that you can use when buying things in a shop, e.g. Do you have any ...?, I need some ..., I'd like ..., Can I help you? Anything else? Point out that anything else is short for Do you need anything else? And means Is there something more you need?

1 any	4 some
2 What size	5 What colour
3 how many	6 how much

5 Ask students to look at the pictures. Explain that these are four types of containers. Ask them to say what types of things you could find in these containers. Then ask students to look at the item column in the table on the right and to find the items that come in the containers.
Explain that What kind? means the same as What type?, so you can ask questions like What kind of paint? or What lype of paint? Then point out the note about litres in the margin.
Now ask students to use the questions in the box and the information in the table and make similar dialogues to the one in 4 . Tell them to take it in turns to be the customer and the shopkeeper. Go round the class, listening to their conversations and making any notes of any problems. When they've finished the activity, go through some of the problems with the class, focussing on errors to do with countable and uncountable nouns.

3 Future projects

Start here

1 Put students in pairs. Ask them to look at the picture and answer the questions.

It's a MagLev train. It runs on a magnetic track.

2 B42

Ask students to look at the specification chart for the MagLev tube. Tell them that they're going to listen to a radio interview with a civil engineer, who's talking about the MagLev tube, and that he will provide the information for them to complete the chart. Play the recording for students to complete the chart. Then ask them to look at the audio script on page 124 to check their answers.

1 Under the Atlantic Ocean from Britain to the USA
22100
35000 km
4100 m
5100,000
$68000 \mathrm{~km} / \mathrm{h}$
7 magnetism

842

$[T=$ Tom; Dr J = Dr Jensen]
T: Today on RadioTech, I'm talking to Dr Tore Jensen. He's a civil engineer and his company is working on plans for a tunnel under the Atlantic Ocean. So, Tore, tell me about this tunnel, or tube, under the Atlantic. Are you building it now?
Dr J: No, no, we're not building it now. That's a long time in the future. Right now, we're thinking about it and planning it. Another company is designing a small-scale model.
T : So, when will they build it?
Dr J: I think they'll start in 2080 and complete it in 2100.
T : Wow! That is a long time in the future.
Dr J: Yes, it is!
T: So, where will the tunnel be? How long will it be? How deep?
Dr J: The tube will be below the Atlantic Ocean. It'll connect the USA with Britain. It'll be about 5000 km long and about 100 metres deep in the ocean.
T : Will the tube move around in the water?
Dr J: No, it won't move. One hundred thousand cables will attach it to the sea floor.
T : Will the train use electricity?
Dr J: No, it won't. It'll use magnetism. The tube will contain a vacuum. MagLev trains will be able to travel through the tube at $8000 \mathrm{~km} / \mathrm{h}$.

Language

Will and won't to predict a future fact or event

Go through the Language box with students. Explain that you use will to talk about future predictions. You form it with the infinitive without to. Students often make the mistake of using this form with to to begin with, e.g. They will to butdd it in 2050 . Also draw their attention to the question forms and the short answers.
Point out the contracted forms ' $/ l$ in the positive sentences, and tell students that this is pronounced /oll/, Then point out the contracted form for will not - won't. Tell students that they should always use these contracted forms when they're speaking.
Tell students that they'll find more information on will in the Grammar summary on page 101 of the Course Book.
3 Ask students to look at the statements. Tell them that they all contain a mistake. The correct information is in the brackets. Tell them they should disagree with each statement and correct it as in the example.

1 The engineers won't start the tube in 2020. They'll start it in 2080.
2 The tube won't be under the Pacific Ocean. It'll be under the Atlantic Ocean.
3 The tube won't connect Britain with Europe. It'll connect Britain with the USA.
4 The train won't use diesel. It'll use magnetism.
5 The tube won't contain compressed air. It'll contain a vacuum.
6 The trains won't travel at $11,000 \mathrm{~km} / \mathrm{h}$. They'll travel at $8000 \mathrm{~km} / \mathrm{h}$.

Extra activity

3 provides students with the opportunity to do some work on contrastive stress. Write the first answer on the board as an example, underlining the information that was incorrect and the corrected information: The engineers won't start the tube in 2020. They'll start it in 2080. Read the sentence out loud to the class, emphasising the words underlined to show contrastive stress. Then put students into pairs. Ask them to take turns with one student reading out the statements, and the other student correcting them, using contrastive stress. Make sure that they're using the contracted forms 'll and won't.

Reading

4 Ask students to look at the picture of the Europe-Africa Bridge. Tell them that this is another future project. Ask them what countries they think the bridge will join. Then tell them to read the text about the bridge and produce a specification chart like the one on page 56 about the tube, using the words in the box. Do not confirm their answers at this stage.

Speaking

5 Put students in pairs. Students take it in turns to ask and answer questions about the specifications of the bridge using the information from their charts. Then check their answers to 4 .

Europe-Africa Bridge

Location of bridge	Between Morocco and Spain
Possible date of completion	2030
Length of deck Material of deck	15 km
fibreglass	
Number of piers	3
Pylon (height)	1000 m
Total number of spans	2
Span (length)	4800 m

6 Ask students to look at the chart. Tell them that it shows a possible project schedule for the Europe-Africa Bridge. It gives details when the different parts of the project will start and when they'll finish. Tell students that they're going to roleplay an interview between a TV presenter and an engineer about the future project, using the information from the chart.
Go through the example exchange under the chart first with students. Explain that you use in for a complete year, e.g. We'll finish in 2027, and at for the beginning or the end of a year, e.g. We'll open the bridge at the end of 2032.

Social English

7 Ask students to discuss the question in small groups. Then feedback, asking students about any interesting changes their group discussed.

Extra activity

Students could think about a future project they're working on, or they can invent one, possibly for a bridge or for building, like the ones in the previous two lessons, and write a project schedule for it. (They could write months rather than years at the top of the chart if appropriate.) They then tell their partner what the project is and tell them about the schedule for it.

Contents

1 Recent incidents

Start here: describing what's happening in a picture and listing common car problems
Listening to an emergency call and completing a crash recovery form
Listening: matching phone calls with pictures of incidents
Completing sentences describing the incidents with present perfect verbs
Language: present perfect to report recent actions
Checking regular and irregular forms of past participle
Speaking: making dialogues to check progress in a car workshop: Have you checked the brakes? Yes, I have./No, I haven't.
Memory test as pre-activity: spotting the differences in two building sites, four minutes apart
Making sentences to explain what has happened in the later picture: Two builders have taken off their jackets.
Word list: verbs and past participles: (metal) beam break, break into, brick, bucket (on digger), builder, buy, car registration number, check, climb down, crane, crash, cut, digger, drive, exhaust pipe, fall, fall over, happen, hard hat, have, jacket, lose, lower, move back, order, put, repair, sell, send, speak, steal, take, fuse, spark plug, pick up, put, put on, raise, scaffolding, sledgehammer, take off, write

2 Damage and loss

Start here: students describe damage to own equipment or tools
Vocabulary: revising verbs of damage: dent, etc. Matching verbs to pictures
Task: correcting a checklist of damage against a visual of an unpacked radio
Listening: checking what's said in a telephone conversation about the damage to the radio against the checklist
Speaking: Making sentences about the damage and things that are missing using There is/are a/some/no, The ... is scratched, The ... doesn't have a/has no ...

Language: focussing on action - I've broken it and focussing on result of action - It's broken.
Practising transforming sentences: I've broken it./lt's broken.
Completing sentences with adjectives: dented, etc.
Transforming sentences: The side of the box is dented. \rightarrow There's a dent in the side of the box.
Task: roleplay - finding out about damage to your partner's car and labelling a diagram
Word list: antenna, body, cable, damage, display screen, external speaker, headphones, missing, radio, user manual irregular verbs - bend, break, burn, crack, cut, dent, puncture, scratch, tear
bonnet, boot, bumper, car - aerial, front/rear (adj), goggles, insulation, lens, mirror, nearside/offside, overalls, safety belt, surface, windscreen

3 Past events

Start here: quiz - saying when events in the history of space travel happened
Reading: checking answers against a chart with names of events and dates
Language: past simple
Speaking: making questions and answers based on the chart of events: When did the Russians launch Sputnik? They launched it in (year)/on (date).
Vocabulary: ago with times, days, weeks, months
Practising talking about days and weeks with ago
Making sentences with ago about the chart of events Listening to a phone conversation with customer services about damage and completing it with present perfect or past simple verbs
Making similar phone conversations using information from a table
Social English: making a list of interesting things you've done in your life
Asking and answering questions about the list. Have you ever , ..? When did you ...?
Word list: ago, December (etc.), fly, land (v), global, go, launch (v), month, more/less than, navigation, satellite, shuttle, space, space station, spacewalk, telescope, the day before yesterday, today, tourist, travel, week, year, yesterday

Briefing

This unit deals with ways of reporting recent incidents, damage and loss (for example in a delivery of goods or equipment), and past events.

1 Recent incidents

Section 1 begins with an incident in which a motorist reports a recent breakdown by phone to a crash recovery company (in 2). The motorist has broken down on a stretch of fast dual-carriageway road with limited access and exit at numbered junctions. This is why, to identify the car's location (position), the company needs to know the road number (A13), the junctions on either side of the car (between Junction 15 and 16) and the direction of travel (going south).
The present perfect form of the verb is introduced here for reporting a recent incident. In the exercises on page 58 , someone is urgently reporting an incident that has happened in the recent past (I've driven my car into a bridge.). In these cases the present perfect is appropriate because the important information is the incident itself, not the time when it happened. In later questioning, the authorities may ask about times (e.g. When exactly did the accident happen?) in which case the past simple is used. But the initial reporting of the incident requires the present perfect. In 6 on page 59 , the supervisor only wants to know if the job has been done (Have you checked the brakes?) not the time when it was done. In 7 on page 59, the student's task is to report what has changed in the four minutes between 10.12 am (on page 117) and the present moment (10.16 am): Two builders have taken off their jackets.

2 Damage and loss

Section 2 takes this grammar point a little further by exploring the relationship between the present perfect and the use of the past participle as a predicative adjective. Someone has dented the radio uses the present perfect to report an action in the recent past. The radio is dented conveys similar information but emphasises the present state which is the result of the action. In technical contexts the past participle is frequently used as an adjective to denote some damage: the bar is bent, the box is dented, the $C D$ is scratched, the glass is broken and so on. To dent something is to make a slight hollow in a surface: if someone stood on the roof of a car, he would probably dent it. Cracked and broken are different mainly in degree: a cracked windscreen would be called broken if pieces have started falling out. The verbs of damage listed in 2 (bend, break, dent etc.) can also be used as nouns: this is why in 5 we can say: the screen is scratched and there is a scratch (n) on the screen. Section 15 in the Grammar summary (page 105) gives more information on the variety of forms that can be used to describe damage or loss.

3 Past events

Section 3 introduces the past simple as a way of reporting events where the time and date are important issues. In the reading text on the history of space flight, Galileo is mentioned: this is the European version of GPS, the global satellite positioning system. In 6 on page 63 , we find the customer, Ben, using the present perfect to make the initial report of damage (I've broken my iPod, I've broken the screen) and then the electronic repairman, Don, using the past simple to ask about specific times (When did you buy it? When did you break the screen?').

History of space exploration: http://www.aero.org/ education/primers/space/history.html
European space agency: http://sci.esa.int/science-e/ www/area/index.cfm?fareaid=1
NASA space agency: http://www.nasa.gov/home/index. html?skipIntro=1

Teacher's notes

1 Recent incidents

Start here

1 Put students in pairs. Ask them to look at the photo and to make a list of the five most common problems you can have with a car. Tell them to use a dictionary to help them if necessary.

2 E 43

Tell students that the woman in the photo is phoning a recovery company. They're going to listen to her giving her details on the recording and they must complete the information on the form. Explain that they'll need to write the number of the road and what the junction is. You could draw a diagram on the board of a motorway with two junctions and add a simple drawing of Ms Zubaid's car between them to illustrate the word. Play the recording for the students to complete the form.
1 Anita Zubaid
415
7 has fallen off
2 Y449 MNE
516
3 Al3
6 south

643

[$\mathrm{PO}=$ Phone operator; $\mathrm{D}=$ Driver]
PO: Hello. Crash Recovery Company. How can I help you?
D: Oh hil l've broken down on the motorwayl
PO: OK, don't worry. What's your name and car registration number?
D: My name's Anita Zubaid. That's Anita spelt A-N-I-T-A Zubaid, spelt Z-U-B-A-I-D. The car is Y449 MNE.
PO: And where are you, Ms Zubaid?
D: I'm on the A13. Between Junctions 15 and 16. Going south.
PO: Right. And what's the problem?
D: Well, the exhaust pipe has fallen off.
PO: OK. We'll be there in 30 minutes. Stay with your car, please.
D: All right. Bye.

Listening

3

3.44

Ask students to look at the pictures in the margin and ask them what they can see. Then play the recording for students to match the phone calls with the pictures.

1 B $2 \mathrm{D} \quad 3 \mathrm{C} 4 \mathrm{~A}$

1. 844

1 [$\mathrm{C} 1=$ Caller 1; $\mathrm{S}=$ Security]
C1: Hello? Hello? Is that Security?
S : Yes, Security here. How can we help?
C1: Some thieves have broken into my office. They've taken my computer.
2 [IT $=$ IT technician; $\mathrm{C} 2=$ Caller 2]
IT: IT department. How can I help you?
C 2 : is that the IT hotline?
IT: Yes. What's the problem?
C2: Something has happened to my computer. l've lost all my data.

3 [EO = Emergency phone operator; C3 = Caller 3]
EO: Emergency. Which service?
C3: I need an ambulance, quickly.
EO: What's happened?
C3: It's my daughter. She's fallen down some stairs. She's cut her leg.
4 [PO = Phone operator; $\mathrm{C} 4=$ Caller 4]
PO: Crash Recovery. How can I help you?
C4: Oh, hello, Yes. I've had an accident. I've driven my car into a bridge.
4 Ask students to look back at picture A and ask: What's happened? Accept any answers, then go through the Language notes with the class.
Ask students to complete the sentences with the verbs in the box. Point out that they need to use the auxiliary have or has plus one of the verbs from the box in each of the gaps.
1 have broken; 've taken
2 has happened; 've lost
3 has fallen; 's cut
4 've had; 've driven

Language

Present perfect with have/has + past participle

Explain that you can use the present perfect to talk about recent actions - when the action happened isn't important, as we're interested in now. Point out that you never use the present perfect with dates, times or time expressions. You have to use the past simple with these.
Tell students that you form the present perfect with the auxiliary verb have (has with he/she/it) and the past participle. Point out that the contracted form of have is 've and has is 's and that they should use these contracted forms when speaking.
Explain that to make the past participle form of regular verbs you simply add -ed, -d or -ied to the verb, e.g. check - checked, close - closed, study - studied. Tell students that there is a list of regular and irregular verbs on page 103 of the Course Book, and that they'll find more information on the present perfect in the Grammar summary on page 102 of the Course Book.
5 Ask students to look at the infinitive verbs and to write the past particle of the verbs. They can then check with a partner and discuss which ones are irregular. Students can check the irregular verb list on page 103.

buy - bought check - checked	sell-sold
send-sent	
crash - crashed	speak - spoke
fall - fallen	steal-stole
order - ordered	take - took
put - put	write - written
repair - repaired	
buy, fall, put, sell, send, speak, steal, take and write are	
irregular verbs.	
check, crash, order and repair are regular verbs.	

Speaking

6 Put students into pairs. Ask them to look at the photo of the supervisor and the mechanic in the car repair workshop. Then to look at the list of jobs they have or haven't done. Tell students to look at the first sentence and ask a couple of students to read out the dialogue below to make sure that they know what to do. Point out the auxiliary have at the beginning of Yes/No questions in the present perfect, and that you use the same auxiliary verb in the short answers.
7 Ask students if they have a good memory. Then tell them that they're going to do a memory test. Ask them to turn to page 117 and look at the picture for one minute. They should try to remember as much detail about the picture as they can. Help them by telling them to look carefully at what the three builders are doing and where they, the crane and the digger are. Point out the time: 10.12 am .
Then ask students to turn back to page 59 and look at the picture for 7 . Point out that this picture shows the scene four minutes later, at 10.16 am . Give them a couple of minutes to try to remember the differences in the picture on page 117. They can then compare the differences they found with their partner. Do not confirm answers at this stage.
8 Ask students to look at the picture of the building site in 7 on page 59 again. They can work with a different partner. Ask them to use the words and the verbs in the box to describe what has happened in the building site since 10.12 , as in the example, without looking at the picture of that scene at the back of the book.
Students can then write up their answers and compare their answers with their original partner.

1 Two builders have taken off their jackets.
2 The builder on the left has climbed down from the scaffolding.
3 The crane has lowered the beam.
4 The digger has raised its bucket.
5 The digger has moved back./A builder has driven the digger back.
6 The bricks have fallen over.
7 The builder in the middle has put on his hard hat.
8 The builder on the right has put down the saw.
9 The builder on the right has picked up a sledgehammer.
10 The builders have put their jackets on the drum.

Extra activity

Play a memory game with students. The object of the game is for the students to find out what changes you've made to the classroom and to what you're wearing.
Tell students to look carefully around the class and at you for ten seconds. Then tell them to close their eyes while you quickly make changes to where things are in the classroom and to your appearance, e.g. if you wear glasses, put these on the desk, if you have a jacket with you put it on, etc.
Students then open their eyes and tell you what changes have been made, using the present perfect tense. They could then play this game in pairs.

2 Damage and loss

Start here

1 Brainstorm a list of tools and equipment and write the words up on the board. Then put students in pairs. Ask them to think of any tools or equipment they have that is damaged and describe the damage to their partner.

Vocabulary

2 This exercise revises verbs students have studied in Unit 6. Ask them to look at the pictures. They match the pictures with the verbs in the box.

1 bend 2 cut 3 scratch 4 tear 5 dent 6 crack 7 break 8 burn

Task

3 Ask students to look at the picture in the Quick Start guide. Tell them to imagine that they've just bought this radio. Ask them what's wrong with it and accept any answers. Tell them that there's a checklist for the radio in the box. However, the checklist contains mistakes about what is in the box and the condition of some of the items. Ask students to look at the illustration and correct the mistakes in the checklist. When they've finished, they can compare their list with a partner. Do not confirm answers at this stage.

Listening

4 45
Ask students to look at the picture in 3 again. Tell students that they're going to listen to a telephone conversation with a customer phoning Customer Services about the radio. Play the recording for students to check their list and correct any items they missed. Then ask students to look at the audio script on page 125 and check their answers.

item	in box	condition
radio	\checkmark	damaged
- radio antenna		OK bent
- body of radio		cracked
- display screen		OK scratched
power cable with plug	no plug	cable OK
4 AA batteries	* no batteries	OK
1 user manual	no manual	\rightarrow
1 pair headphones	\nsim no headphones	OK
1 LH external speaker	\checkmark	ӨK dented (holes in speaker)
1 RH external speaker	\checkmark	OK dented
2 cables for speaker	\nleftarrow no cables for speakers	OK

445

[$\mathrm{D}=$ Del; $\mathrm{Mr} \mathrm{E}=\mathrm{Mr}$ Ericsson]
D: Customer Services. Del speaking. Please give me your order number.
Mr E: AX 5831-77 ...
D: Ah yes, Mr Ericsson. You've bought a radio from us. How can I help you?
Mr E: I've opened the box and taken out the radio. There's some damage and there are some missing items.
D: I'm sorry to hear that. What's missing?
Mr E : The power cable has no plug....
D: No ... plug ... on ... cable. OK. Anything else?
Mr E: Yes. There are no batteries and no headphones....
D: No batteries ... and headphones. OK. Is that all?
Mr E : No. There are no cables for the speakers and there's no user manual. ...
D: Cables for speakers and user manual ... missing. Anything else?
Mr E: There's some damage. The body is cracked. There's a scratch on the screen. ...
D: Screen ... scratched. Body ... cracked. OK. Is there any more damage?
Mr E: Yes. The antenna is bent and the speakers are dented. And there are some holes in one speaker. ...
D: Oh dear, I do apologise for all that. Please put everything in the box again. We'll collect it from your house tomorrow. Then we'll send you a new radio.
$\mathrm{Mr} \mathrm{E}: \mathrm{OK}$.
D: Goodbye, sir. Thanks for calling.

Speaking

5 Ask students to look at the table of the ways to report damage and the ways to report when something is missing. Then write these phrases on the board:
There is a ... There are some/no ...
The ... is scratched.
The ... doesn't have a ... The ... has no ...
Ask students to look at the picture in the Quick Start guide and ask them to tell you something that's wrong with the radio, using one of the phrases on the board.
Then ask students to write similar sentences about the damage to the radio and the items that are missing. Ask them to try to use all the different ways to report the damage or missing item.

The radio is damaged.
The radio antenna is bent.
The body of the radio is cracked.
There are some holes in the left-hand external speaker.
The batteries are missing./There are no batteries in the box.
There aren't any cables for the speakers./There are no cables for the speakers.

Language

Past participles as adjectives

Go through the Language box with the class. Remind students that they studied the present perfect for recent actions in the last lesson. Draw their attention to the examples in the first column. Tell them that here you're focussing on the action. The example sentences in the second column focus on the result of the action (you're not interested in who has done the action). You form these sentences with a past participle, which is used as an adjective after the verb be. The radio is dented.

Extra activity

To give students extra practice, draw the table below on the board or an OHT and ask students to complete it.

Verb	Past participle
scratch	scratched
crack	
bend	bent
burn	
cut	
tear	torn
break	

6 Ask students to rewrite the sentences to focus on the result of the action following the same pattern as in the Language box. Ask them to read out their answers. Explain that you can pronounce the ed endings on regular verbs with a $/ \mathrm{t} /, / \mathrm{d} /$ or an $/ \mathrm{ld} /$ sound. When a verb ends in t or d, such as need or want, you pronounce ed as /ad/. With unvoiced sounds $/ \mathrm{f} / \mathrm{/} / \mathrm{k} /, / \mathrm{p} /$, /s/ , etc., the ed ending is pronounced $/ \mathrm{t} /$, e.g. picked. With voiced sounds $/ \mathrm{g} /$, $/ \mathrm{n} /, / \mathrm{v} /$, etc. the ed ending is pronounced /d/, e.g. phoned. Watch out for errors where students pronounce verbs that have /t/ and /d/ endings with two syllables, e.g. /hæpənid/ for happened.

1 The display screen is scratched.
2 The antenna is bent.
3 The body of the radio is burnt.
4 The top of the speaker is dented.
5 The cover of the plug is cracked.
6 The user manual is torn.

Extra activity

Write the following headings on the board:
/d/ /t/ /Id/

Then tell students to write the following regular verbs under the correct heading: cracked, climbed, crashed, scratched, dented, moved, raised, repaired.

7 Ask students to look at the pictures and to identify the problem for each one, using the words from the box. They then complete the sentences using the correct form of the words in the box.
$\mathbf{1}$ dented $\mathbf{2}$ scratched $\mathbf{3}$ cracked $\mathbf{4}$ cut $\mathbf{5}$ bent 6 torn

8 Remind students of the ways to report damage that they studied in 5. Write: The screen is scratched. There's a scratch on the screen. to remind them and to demonstrate the activity.
Students then rewrite the sentences in 7 to give the same meaning, beginning with There is $a \ldots$ or There are some

I There's a dent in the side of the box.
2 There are scratches on the lenses of the goggles.
3 There are cracks in the surface of the road.
4 There's a cut on the insulation of the cable.
5 There's a bend on the pipe below the tank.
6 There's a tear in the overalls.

Task

9 Put students in pairs. Tell them to look at the diagram of the car on the page. Ask them to name other parts of the car and write these on the board.
Then ask Student B to turn to page 116 and look at the diagram of the damaged car. Student A asks Student B about the damage to their car and labels the diagram on page 61 . They then change roles. Finally, they check the labels on each other's diagram.

Extra activity

Tell students that they are the bodywork technician working on the car in 9 . Tell them to look at the diagram of the damaged car and ask them to write an email to the customer, describing the damage to the car, using the language they've studied in this lesson.

3 Past events

Start here

1 Ask students to look at the photos on the page and to identify what they can see (a space shuttle, a satellite, an astronaut fixing a space station). Pre-teach telescope (you look through this to make objects far away look bigger), and crew (people who work on a ship, plane, space station, etc.) and ask them what a space tourist does.
Then put students in pairs. Tell them to cover the text in 2 and tell them that they're going to do a space quiz. Ask them to look at the list of events and tell them to work with their partner and give the approximate year for these events. Give them a time limit of five minutes to complete this activity. Do not confirm answers at this stage.

Reading

2 Ask students to read the chart and check their answers to 1. Explain that launch means to send a space shuttle/ satellite, etc. into space.

```
space station: }197
telescope in space: }199
man in space: }196
space tourist:}200
satellite: }195
spacewalk: }196
man on the Moon: }196
shuttle in space: }198
crew to enter the International Space Station: 2000
European navigation satellite: 2005
```


Language

Past simple

Go through the Language box with the class. Explain to students that you use the past simple tense to talk about completed events in the past. You use it with dates, times or time expressions.
Explain that you form the past simple of regular verbs by adding ed, -d or -ied to the verb. Some irregular past simple verbs are the same as those in the past participle, but others are different. There is a list of regular and irregular verbs on page 103 of the Course Book.
You form Wh- questions in the past simple in the same way as the present simple, but with the auxiliary did instead of do/does.
Tell students that they'll find more information about the past simple in the Grammar summary on page 102 of the Course Book.

Extra activity

Ask students to find and underline all the irregular verbs in the past simple in the text. They then write the infinitive of the verb.

Speaking

3 Students now practise asking and answering questions in the past simple. First, ask them to look at the note in the margin, which explains the difference between in and on for dates

Then tell students to look back at 2. They make questions from the information in the events column, and answer them either using the exact date with on, or giving the year using in.

Vocabulary

Explain that you use ago with the past simple. It means before now. Go through the examples in the box with students and ask them to read the note in the margin. Tell students that in British English you can use both these ways to say the date, but in American English you say November the fifteenth, not the fifteenth of November.
4 Ask students what month it is and tell them to write it on the line at the top of the calendar. Then ask them to put a circle round today's date. They then say what the dates listed are.
5 Students now make statements about the dates in the chart in 2 using ago and approximate years from today's date. Point out that for making approximate dates they can use more than, less than and tell them that they can also use about if appropriate.

1 The Russians launched Sputnik more than/about 50 years ago.
2 Yuri Gargarin became the first man in space more than 40 years ago.
3 Leonov made the first walk in space more than 40 years ago.
4 The first men, Armstrong and Aldrin, landed on the Moon about 30 years ago.
5 The Russians launched the first space ship station, Salyut 1 more than 30 years ago.
6 The Americans put the first shuttle into space more than 20 years ago.
7 NASA sent the Hubble telescope into space more than 10 years ago.
8 The first crew entered the International Space Station less than 10 years ago.
9 The first space tourist flew into space less than 10 years ago.
10 The Europeans launched Galileo, a global navigation satellite less than 10 years ago.

6 246
Tell students that they're going to listen to a telephone conversation between a customer and a man working at an electronic repair shop. Play the recording once through and ask students to tell you what the problem is.
Then play the recording again for students to complete the phone call.

$$
\begin{aligned}
& 1 \text { broken } 2 \text { buy } 3 \text { bought } 4 \text { dropped } 5 \text { cracked } \\
& 6 \text { crack }
\end{aligned}
$$

346

[CS = Customer Services; BJ = Ben Jones]
CS: Hello, Electronic Repairs. Don speaking. How can I help you?
BJ:Hi. My name's Ben Jones. I've broken my MP3 player. Can you repair it?
CS: OK, sir. What's the model number?
BJ:lt's a Super 30 GB .
CS: And when did you buy it?
BJ: Er, let's see Yes, I bought it on the 18th of August.
CS: And what's the problem?
BJ:I've dropped it player and l've cracked the screen.
CS: And, er ... when did you crack the screen?
BJ:Yesterday.
CS: OK, bring it into the shop and I'll look at it.
BJ:Thanks. Bye.

Extra activity

Ask students to look back at the conversation and circle the verbs in the past simple and underline the verbs in the present perfect. Ask them to explain why they used the past simple and why they used the present perfect in this conversation.

7 Put students in pairs. Ask students to look at the chart and use the information to make similar phone calls to the one in 6 . Go round checking that they're using the past simple and present perfect forms correctly.

Social English

8 Ask students to write a list of interesting things they've done in their life, with the dates.
Alternatively, if students think they haven't done many interesting things in their life, you could ask them to write a list of some things they've done in their life and some that are invented. In 9 , the class can then say which things they think are true and which things they think have been invented.
9 You could start this off by writing up a few interesting things in your life and telling the class about them. Students then tell the class about their lists. Alternatively, they could work in small groups and tell each other about their lists.

Review Unit D

Answer key

11 How wide is the road?
2 How high are the pylons?
3 How long is the deck of the bridge?
4 How high is the scaffolding?
5 How deep are the foundations of the building?
6 How long are the steel beams?

21 deep 2 high 3 wide 4 long

31 How high is the bridge?
2 The tower is 46 m high.
3 How deep is the sea under the bridge?
4 This new road is 355 km long.
5 How wide are the screws?
6 The well is more than 30 m deep.

41 How many storeys does the building have?
2 How much cement does the builder need?
3 How many cranes are the men using?
4 How much oil does the car need?
5 How many screws are you buying?
6 How much concrete can ten trucks carry?

51 Deck (length): 1.2 km
2 Cables (number): 20
3 Span (length): 832 m
4 Pylon (above deck): 45 m
5 Pier (width) 35 m
6 Deck (above water): 185 m

71 How long will the tunnel be?
2 It will be 40 km long.
3 How many railway lines will it have?
4 It will have two.
5 How wide will it be?
6 It will be 8 m wide.
7 How deep will it be?
8 It will be 300 m deep.
9 When will the engineers complete it?
10 They'll complete it in 2025.

81 No, they didn't. They completed it in 2004.
2 No, I haven't. I've worked in a video shop.
3 No, they won't. They'll build a tunnel.
4 No, they aren't. They're planning and designing it now.
5 No, it hasn't. It's put men on the Moon.
6 No, it didn't. It launched it in 1957.

91 My car has broken down.
2 NASA has launched the space shuttle.
3 A virus has attacked our office computers.
4 I've written the email and I've sent it to the customer.
5 The technician has taken the hard drive out of the computer.
6 The exhaust pipe has fallen off my car.

1 The wheel has no wheel nuts. / The wheel doesn't have any wheel nuts. / There are no wheel nuts on the wheel.
2 The radio has no batteries. / The radio doesn't have any batteries. / There are no batteries in the radio.
3 The light has no bulb. / The light doesn't have a bulb. / There's no bulb in the light.
4 The cable has no plug. / The cable doesn't have a plug. / There's no plug on the cable.
5 The socket has no cover. / The socket doesn't have a cover. / There's no cover on the socket.
6 The car has no tyres. /The car doesn't have any tyres. / There are no tyres on the car.

11 I The front bumper is dented.
2 The windscreen is broken.
3 The rear seat of the car is burnt.
4 The poles of the scaffolding are bent.
5 The safety jackets are torn.
6 The rear panel of the car is scratched.

121 The antenna is bent. / There's a small bend in the antenna.
2 The walls are burnt. / There are two large burns on the walls.
3 The window is cracked. / There are some cracks in the window.
4 My shirt is torn. / There's a tear in my shirt.

131 This cover is scratched.
2 The car has no wheels.
3 There aren't any plugs on the cables. / There are no plugs on the cables.
4 There are some cracks in the windscreens.
5 This garage doesn't have a workshop manual.
6 The roof of the car is dented.

141 bought 2 find 3 found 4 keyed 5 did you pay 6 use 7 gave 8 used 9 did you receive 10 came

15 The water tower stores water. The main parts of the water tower are water pipes, a pump, a tower and a tank. The tower is made of galvanised steel, and the tank is made of aluminium and fibreglass. The tower is 60 m high and the tank is 10 m wide. The tank can hold five million litres of water.
Water flows to the pump. The pump pushes the water to the city. Extra water flows up into the tank. The tank stores the water. The extra water flows down from the tank to the city.

Projects

16 Students can do their research on the Internet or in a library, and in their own language if they wish. They must then write their results in English.

Quick test answer key

Part 1: Vocabulary and grammar

1
1 high, in height
3 deep, depth
2 long, length
4 wide, width

21 bridge 2 material 3 concrete

3

$\mathbf{1}$	12.25	4 two weeks ago
$\mathbf{2}$ an hour ago	5 7th May 2010	
$\mathbf{3}$ Saturday 5th July 2010		

41 much 2 any 3 a 4 any 5 many 6 some

51 Where was it built?
2 When will they complete the building?
3 How long is it?
4 What happened?
5 What do you need?
6 How long is it?

61 travel-travelled-travelled
2 build - built - built
3 send - sent - sent
4 take-took - taken
steal - stole - stolen
71 went
5 haven't repaired
2 has happened
6 sold
3 Will, speak
7 'll complete
4 won't start

81 My computer is broken.
2 The front panel of my car is dented.
3 There is a scratch on the table.
4 There are cracks in the window in three places.

Part 2: Reading and writing

Reading
The Great Belt East Bridge: specifications

Structure	suspension
Material: cables	steel
Material: piers	1624 m
Length of main span	19
Total number of piers	2
Total number of pylons Height of pylons above sea level	254 m
Height of deck above water	65 m
Length of deck Width of deck	6.8 km

Writing

```
Dear ...
I'm writing about the TV I ordered on 5th
July. Order number X-35324. I've opened the
box and there's some damage. There's a dent
on the back of the TV and the screen is
cracked. There's also no manual in the box.
So, I can't set up the TV.
Please could you arrange to send me a new
TV and to collect the damaged TV.
I look forward to hearing from you.
Best wishes
```


Part 1: Vocabulary and grammar

1 Complete the questions and answers, using nouns or adjectives.

> deep depth height high length long wide width

1 How \qquad is the Statue of Liberty?
The Statue of Liberty is 46.50 m in \qquad from the base to the torch.
2 How \qquad is the Yagtze River?
The Yagtze River is over 6300 km in \qquad It flows from Qinghai Province to Shanghai.
3 The Channel Tunnel between England and France is very \qquad -
It's average \qquad is 45.7 m below the sea bed.
4 The Sydney Harbour bridge is very \qquad . It's about 4.9 m in \qquad -

2 Underline the odd word out in each group.
1 pier cable deck span bridge
2 concrete aluminium nylon material titanium
3 bridge building concrete tower tunnel

3 It's 12.30, Monday 7th July 2010. Write the following times, dates and expressions with ago.

1 \qquad five minutes ago.
211.30 \qquad
3 \qquad two days ago
4 Monday 23rd June
5 \qquad two months ago (5 marks)

4 Choose the correct words to complete the sentences.
1 How much/many concrete do you need?
2 I don't have some/any oil in the car.
3 Peter has $a /$ some tin of paint.
4 Do you need some/any water?
5 How much/many storeys does the Burj Dubai building have?
6 They're building some/any new roads this year.
(6 marks)

5 Write the questions for these answers. Use How, What, When, Where.

It was built in the South of France.
2
They'll complete the building in 2010 .
3
The total length is 347 km .
4
I fell over the bricks on the floor.
5 \qquad ?
I need some blue paint.
6
20 mm in length.
(6 marks)
6 Write the past tense and the past participle of these verbs.

	Verb	Past tense	Past participle
1	travel		
2	build		
3	send		
4	take		
5	steal		

(5 marks)
7 Put the verbs in the correct tense: the past simple, present perfect or future will.
1 They \qquad (go) to Cairo three years ago.
2 Is that the IT helpline? Something \qquad (happen) to my computer. Can you help me?
3 _ you \qquad (speak) to the investigator about the accident tomorrow?
4 They \qquad (not start) the bridge until 2015.
5 Sorry, I \qquad (not repair) your car. I'll do it tomorrow.
6 They \qquad (sell) their first radio in 1992.
7 They \qquad (complete) the building in 2011.
(7 marks)

8 Rewrite these sentences so that the meaning is the same.
1 l've broken my computer. My computer \qquad -
2 There's a dent in the front panel of my car. The front panel of my car \qquad -
3 I've scratched the table. There \qquad -

4 He's cracked the window in three places. There \qquad -.

Part 2: Reading and writing

Reading

Read the text. Then complete the specification table.

The Great Belt East Suspension Bridge

The Great Belt East Suspension Bridge (the 'Storebæltsforbindelse'), links the Baltic Sea to the North Sea, between the islands of Halsskov and Sproga in Denmark. It has the third longest free-standing span in the world. This span is 1624 m long. The road deck is 25.1 m wide and 65 m above the water, and the total length of the bridge, with the roads leading up to it, is 6.8 km . On the main span there are two pylons. The pylons are between 27 metres below sea level and 254 metres above sea level. The cables attached to the pylons are made of steel. There are 12 concrete piers to support the outer span of the deck on the Haslsskov side and seven on the Sproga side.

The Great Belt East Bridge: specifications	
Structure	
Material: cables	
Material: piers	
Length of main span	
Total number of piers	
Total number of pylons	
Height of pylons above sea Ievel	
Height of deck above water	
Length of deck	
Width of deck	

(5 marks)

Writing

Put the lines $a-c$ in the correct order in this email. Then write the complete email below.
a) ordered on 5th July. Order number X-35324. I've
b) cracked. There's also no manual in the box. So, I can't set up the TV.
c) I'm writing about the TV I
d) a dent on the back of the TV and the screen is
e) opened the box and there's some damage. There's

```
Dear ...
Please could you arrange to send me a new
TV and to collect the damaged TV.
I look forward to hearing from you.
Best wishes
```


Contents

1 Operation

Start here: discussing how an airboard moves
Completing a chart with the parts of an airboard that go with the functions
Listening: checking answers to the chart
Listening and completing a dialogue with present simple forms
Language: What does/do ... do? It/they + present simple Making dialogues about the airboard using present simple and short answers

Reading: answering questions from a text about how an airboard works.
Language: transforming sentences in the present simple form: The function of the handlebar is to steer ... \rightarrow The handlebar steers .

Vocabulary: matching pictures with sentences
Completing sentences with attached to, connected to, suspended from, mounted on
Word list: accelerate, above/below, backwards/forwards, body (of airboard), brake, contain, control, cushion (of air), drive, engine, fan, force, friction wheel, function, function/ job/purpose, handlebar, hold, hovercraft, increase, lever, part, platform, press, propel, pull, push, release, skirt (of hovercraft), steer, support, upwards/downwards

2 Hotline

Listening: selecting the correct keys to press from an automated phone message
Listening to a service technician answering the phone and completing the text with what he says
Listening to a phone call to service hotline and identifying a customer's mistake in setting up a router
Speaking: practising similar phone conversations
Making more dialogues using two different router set-ups
Language: giving appropriate short answers
Listening to the questions and repeating the answers

Task: finding the differences between two wiring diagrams: Does it connect to ...? Is it connected to ...? Have you connected the ...? and revision of location phrases: at the top, on the left, etc.
Word list: adapter, antenna, computer, connected to, digital receiver, DVD, hotline, key, modem, press, power outlet, power socket, RF socket, router, SCART socket, TV, VCR

3 User guide

Start here: listening to a dialogue and completing a flow chart
Reading: drawing a flow chart based on a troubleshooting guide
Language: zero conditional + imperative
Transforming dialogues into zero conditional and imperative sentences
Drawing a flow chart based on a short text
Writing: changing a dialogue into a set of instructions for a troubleshooting guide
Social English: completing dialogues with short answers Practising the dialogues Making similar dialogues, using different information Word list: check, computer, conference, disk drive, engineering, flat (battery), IT, loose (cable), notebook LED, open, paper, printer, problem, power button, power source, recharge, replace, screen, speaker, start, starter motor, switch, switch on, take out, turn

Briefing

This unit deals with troubleshooting, that is, identifying and solving problems with systems, set-ups or equipment. A user (of equipment) can obtain technical support (or help) by means of operating manuals (or user guides) and telephone hotline services.

1 Operation

Section 1 looks at ways of explaining how equipment works and how it is operated, using as an example the airboard, a sports/leisure vehicle. The airboard uses the hovercraft principle of the air cushion. An engine-driven fan sucks in air from the front and thrusts it downwards, creating a cushion of air enclosed by a flexible skirt. This allows it to hover a few centimetres above the ground. The fan also provides a stream of air which exits at high speed from the rear of the craft and propels the craft forwards, like a hovercraft. To increase or reduce the airboard's speed, you press one of the levers on the handlebar: this lever controls the speed of the engine and fan. To improve acceleration the airboard has a friction drive wheel beneath the airboard at the rear. When you want to accelerate forward, you move your body weight backwards slightly so that the friction wheel touches the ground. At the same time you press the other lever on the handlebar: this engages the friction drive clutch and makes the wheel move quickly. This gives a quick burst of acceleration without losing the feeling of hovering above the ground. To turn left or right, you move your body weight slightly left or right while also moving the handlebar down slightly. The airboard has a top speed of $25 \mathrm{~km} / \mathrm{h}$. To stop the airboard you simply release both levers and the board slows down and stops. The fuel tank can hold approximately 5 litres of petrol.

2 Hotline

Section 2 deals with computer technical support provided to customers over telephone hotlines. Hotline technicians often ask the customer to switch on their computers so that they can go through all the steps one by one with the customer (I'll talk you through it), checking at each stage what the customer sees on the screen. The customer on page 70 is having problems with his wireless router. This is a piece of equipment which receives data wirelessly from a remote computer (perhaps in another room or office in the same building) and sends it by cable to the modem. The modem then transmits the data via another cable to the internet system. The correct set-up (arrangement) is shown in 3 . The router is also connected by cable to the main computer and receives electrical power from the power outlet. The remote computer is not shown on the diagram.
Section 2 also deals with the wiring diagram of a set-up which connects together an analogue (or analog) TV, a digital receiver, a VCR (video cassette recorder) and a DVD (digital video disk) player. The digital receiver (also called a set-top box) allows an analogue TV to show
programmes from digital channels. (This is a transitional arrangement which will not be necessary in the future when analogue channels have been replaced by digital channels in every country and all TVs are digital.) RF means radio frequency; an RF socket connects equipment to the external TV or radio antenna. SCART is a European standard for connecting two or more audiovisual machines together, e.g. a TV and a DVD player.

3 User guide

Section 3 deals with troubleshooting flow charts and user guides. A flow chart is a diagram which shows the stages in a process or an algorithm. An example of a flow chart is shown on page 81 (Revision Unit E). An LED (light-emitting diode) is a semi-conductor diode which glows when an electrical current is applied. Many types of equipment use LEDs instead of lamps with bulbs to show that equipment is on, and other functions.

Airboards: http://www.arbortech.com.au/airboard
How hovercrafts work: http://www.quicktechhobby. com/Hovercrafts/what_are_hovercrafts.htm
How wireless routers work: http://www.
howstuffworks.com/router.htm
Digital receivers/ Set-top boxes: http://www. itvdictionary.com/set-top_box.html
Flow charts and algorithms: http://en.wikipedia.org/ wiki/Flowchart

Teacher's notes

1 Operation

Start here

1 Put students in pairs. Ask them to look at the photo. Tell students that the man is riding an airboard. Tell them to discuss with their partner how they think that the vehicle moves.
2 Ask students to look at the photo again and to match each numbered part with its function in the chart. They can then compare their answers with a partner, but do not confirm answers at this stage. Tell students that you pronounce levers /li:vez/.

Listening

3

e3 47

Play the recording for students to check their answers to 2. Then ask individual students to read out full answers, e.g. The engine drives the fan.

Part	Function
2 (the engine)	drive the fan
4 (the fan)	pull the air in + force the air down
1 (the levers)	control the speed and acceleration
5 (the handlebar)	steer the airboard
3 (the body)	support the rider

- 847

A: Look at the airboard. You can see the five main parts: the body, the engine, the fan, the handlebar and the two levers. The body supports the rider and the engine drives the fan. The handlebar steers the airboard left and right.
B: Ah yes, I see. So what does the fan do?
A: It pulls the air in and forces it downwards.
B: Right. And what do the two levers do?
A: They control the speed and acceleration of the airboard.
4 Tell students to look at the dialogue, which comes from the recording, and point out the note in the margin. You could either play the recording again for students to complete the dialogue, or ask students to try to complete it first and then listen to the recording to check. Tell them to look back at the chart in 2 to help them.
1 supports 2 drives
7 forces
$\mathbf{8}$ do
$\mathbf{9}$ do
$\mathbf{1 0}$ doers
$\mathbf{1 0}$ control

Language

Present simple

Go through the Language box with the class, which revises the present simple questions and affirmative forms. Remind students of the work they did on functions in Unit 3 on page 23. Tell them that you use the questions What do/does ... do? to ask about how something works.
Remind students that in the 3rd person singular you use does not to in questions, and that you add an s to the verb in affirmative sentences.
Tell students that they'll find more information about present simple questions in the Grammar summary on page 101 of the Course Book.
5 Students practise asking and answering Wh-and Yes/No questions, using the present tense. Ask students to make short dialogues about the parts of the airboard. Go through the example with the class so that they know what to do. Remind them to use the same auxiliary in the short answers as in the question.

Reading

6 Ask students what a hovercraft is and to explain how it works. Then ask students to read the article which explains how the airboard works and answer the questions. They can then check their answers with a partner.
Ask students to find the verb in the text which means to take your hands off the levers (release/rili:s/). You could then get students to label the skirt, the body, the fan, the handlebar and the levers in the diagram of the airboard.

1 It accelerates the airboard into the air.
2 It's below the body. It's made of rubber. Yes, you can bend it.
3 The rider stands on the fibreglass platform.
4 The airboard stops.
5 It means push.
6 (1) forwards (line 15); (2) downwards (line 14)

Language

7 Ask students to read the first sentence. Tell them to underline the infinitive in the sentence (to steer). Explain that this is the infinitive of purpose and that you use it when you want to describe the purpose or function of something. (Note that students often make the mistake of adding for, e.g. The purpose of the hantlebar is for to steer the airboard.) Tell them that purpose, function and job mean the same thing.
Go through the example with the class. Explain that they have to rewrite each of the sentences changing them into the present simple, and beginning the sentences with a part of the airboard.

1 The handlebar steers the airboard.
2 The levers control the speed of the airboard.
3 The friction wheel accelerates the airboard.
4 The fan and the engine propel the airboard forwards.
5 The skirt holds the air and supports the airboard.
6 The body and the platform support the rider.

Vocabulary

8 Ask students to look at the pictures and match them with the sentences.

1D 2 A 3 B 4 C

9 Ask students to complete each sentence with a phrase from the box.

1 suspended from
2 mounted on
3 connected to
4 attached to

Extra activity

Ask students to find things in the classroom that are attached to, connected to, mounted on and suspended from and make sentences.

2 Hotline

Listening

$1 \quad 48$

Ask students to look at the photos and to tell you what the function of an automated phone message is. (It's to connect you to the correct department in a company.) Then ask them what the automated message will tell you to do. (Press keys on your phone in order to get through to the correct department and the right person.) Tell them to listen to the message and write down the three numbers that the caller needs to press on his phone to talk to the service technician about his computer problem.

The customer presses key numbers 2, 3, 6 .

C. 48

Thank you for calling New Tech. For the sales department, press 1. For the service department, press 2.
This is the service department. For computers, press 3. For printers, press 4.
This is the computer unit. To hear information about our services, press 5. To speak to a service technician, press 6.

2 CA 49

Tell students that the caller is now speaking to the service technician. Play the recording for them to complete the dialogue. Then play the recording again, pausing to allow students to repeat the phrases. You could then ask students to practise the dialogue, using information about themselves.

1 reached 2 speaking 3 can 4 help

449

Hello, you've reached the computer service hotline. This is Jan speaking. I'm the technician. How can I help you?

3 250

Ask students to look at the picture. Tell them that the caller is having problems setting up his wireless router. Play the recording for students to delete the wrong words in the two sentences.

1 The router isn't connected to the modem.
2 The customer hasn't connected the computer to the router.
${ }^{-2} 50$
[C = Customer; ST = Service technician]
C: Hello, is that the IT hotline?
ST: Yes, it is. I'm the technician. My name's Sofia. How can I help you?
C: I've got a problem with my wireless router. It doesn't work.
ST: OK. I'll talk you through it. Are you sitting at the computer now?
C: Yes,lam.
ST: OK. Look at the back. Is the router connected to the power outlet?
Ci Yes, it is.
ST: OK. And is the router connected to the modem? That's the green cable.
C: Ah ... no, it isn't.
ST: So, connect the router to the modem now. ..., Have you done that?
C: Yes, I have. I've connected it.
ST: OK. Now, have you connected your computer to the router? That's the blue cable.
C: Erm ... no, I haven't.
ST: OK. Do it now. ... Have you done that?
C: Yes, I have.
ST: OK. Now let's look at the lights

Speaking

4 Put students in pairs. Tell students to look at the dialogue and point out the Useful language box in the margin. Tell students that they should practise similar conversations based on the set-up in 3, using their own names and adding the equipment from the illustration. Tell them to sit back to back when making the telephone call so that they can't see each other when they're speaking.
5 Put students in pairs. Ask them to look at the two situations in the illustrations and to make more telephone conversations like the one in 4 about them.

Language

6 In this exercise, students practise giving short answers, using the correct auxiliary verb. Ask students to read the questions and write the Yes/No answers. Tell them to do this exercise very quickly. You could turn this into a race, asking students to call out when they have finished the exercise.

1 Yes, they are. / No, they aren't.
2 Yes, it is. / No, it isn't.
3 Yes, I have. / No, I haven't.
4 Yes, it does. / No, it doesn't.
5 Yes, I did. / No, I didn't.
6 Yes, you can. / No, you can't.
7 Yes, I do. / No, I don't.
8 Yes, I am. / No, I'm not.
9 Yes, they do. / No, they don't.
10 Yes, it has. / No, it hasn't.

Ask students to look back at 6. Tell them that you're going to play the recording of the questions and that they'll hear only one answer for each question. Play the recording, pausing after each answer for students to repeat the question.
1 Yes, they are.
2 No, it isn't.
3 Yes, I have.
4 No, it doesn't.
5 No, I didn't.
6 Yes, you can.
7 Yes, I do.
8 No, I'm not.
9 No, they don't.
10 Yes, it has.

51

1 A : Are the lights on?
B: Yes, they are.
2 A: Is the computer connected to the adapter?
B; No, it isn't.
3 A: Have you sent the email?
B: Yes, I have.
4 A: Does your new radio work?
B: No, it doesn't.
5 A: Did you go to the cinema yesterday?
B: No, I didn't.
6 A: Can I speak to your brother?
B: Yes, you can.
7 A: Do you work in the city?
B: Yes, I do.
8 A : Are you sitting at the computer now?
B: No, I'm not.
9 A: Do those speakers cost a lot of money?
B: No, they don't.
10 A : Has your car broken down?
B: Yes, it has.

Task

8 Put students in pairs. Ask Student A to turn to page 117.
Tell students that they have the same diagram, but that the set up for the wiring is different. Tell them that they mustn't show their partner their diagram. Refer them to the Useful language box where they will find words they need for the different parts of the equipment and questions they can use to find out the differences between their wiring systems.

Possible answers:

1 In Student A's picture (on page 117), the DVD is on the left, below the digital receiver and just above the TV. In Student B's picture, the VCR is in this position.
2 In Student A's picture, the VCR is on the left, below the TV. In Student B's picture, the DVD is in this position.
3 In Student A's picture, the RF IN socket on the digital receiver is to the left of the RF OUT socket. In Student B's picture, the RF OUT socket on the digital receiver is to the left of the RF IN socket.
4 In Student A's picture, the SCART sockets are on the left and on the right on the VCR. In Student B's picture, they are both on the right, above and below each other.
5 In Student A's picture, the RF sockets on the VCR are on the right, next to each other. In Student B's picture they are on the left, above and below each other.
6 In Student A's picture, the RF IN socket on the TV is at the top on the left. In Student B's picture, the RF IN socket is at the bottom on the left.
7 In Student A's picture, the SCART sockets are at the bottom of the TV, to the left and to the right of the screen. In Student B's picture, the SCART sockets are both at the bottom on the right, next to each other.
8 In Student A's picture, the VCR isn't connected to anything. In Student B's picture, the VCR is connected to the TV to the digital receiver.
9 In Student A's picture, the TV is connected to the digital receiver from the RF IN socket in the TV to the RF OUT socket in the digital receiver. In Student B's picture, the TV is connected to the digital receiver via the VCR. The TV is connected to the VCR from the RF IN socket on the TV to the RF OUT socket on the VCR. Then the VCR is connected to the digital receiver from the RF IN socket on the VCR to the RF OUT socket on the digital receiver.
10 In Student B's picture, the VCR is also connected to the digital receiver with a cable from the bottom SCART socket on the VCR to the VCR SCART socket on the digital receiver.

3 User guide

Start here

1 52
Ask students to tell you how to start up their computer. Then tell them to read the two sentences in the note pad and ask them to look at the flow chart. Explain that the flow chart is based on the information from the notes. It's organised into a simple instruction, a question and answer and a solution to a problem. Play the recording for students to complete the flow chart.

Q 52

1 Press the power button.
2 Does the computer start?
3 Check the green LED.

A: Press the power button.
B: OK. I'm pressing it.
A: Does the computer start?
B: No, it doesn't.
A: OK. Check the green LED.

Reading

2 Ask students to read the troubleshooting guide on how to start a notebook computer. Tell them to use the information in the guide and draw a similar flow chart for the computer to the one in 1 .

Language

Zero conditional + imperative

Go through the examples in the Language box on the zero conditional. Remind students that in zero conditional sentences, you use the present simple in the conditional clause, but in this case, because you're giving instructions, you use the imperative in the result clause, i.e. the bare infinitive with no subject, e.g. If the light is off, press the power button. Also remind the student that they must always use a comma after the conditional clause.
Tell students that they'll find more information showing all forms of the zero conditional in the Grammar summary on page 104 of the Course Book.
3 Ask students to read the first dialogue and the example at the bottom. Make sure that they know what to do. If necessary, do the second dialogue with them as a class. They then make zero conditional sentences from the rest of the dialogues. They can then compare their answers with a partner before you check with the class.

1 If the light isn't on, press the switch.
2 If the airboard doesn't start, turn the key.
3 If there aren't any numbers on the screen, press the keys.
4 If the LEDs are off, push the power button.
5 If the battery is flat, either replace it or recharge it.
6 If the speakers work, connect them to the computer.

4 Ask students to read the information from the text. Tell them to draw a flow chart, using the information in the text. Point out that the first part of the flow chart is shown in the margin and elicit from the class what goes in the next part of the flow chart. Write the first two parts of the flow chart on the board and ask them to continue with the rest of the flow chart.

Writing

5 Ask students to read the dialogue and the examples below. Remind them of the sentences they wrote from the short dialogues in 3 . Then ask them to write a troubleshooting guide based on the dialogue. Point out that they should write six sentences. Tell them to look back at the troubleshooting guide for notebook computers in 2 to help them.

1 If you can't print, check the cable between the printer and the computer.
2 If the cable is loose, connect the cable.
3 If the printer isn't on, check the power.
4 If the printer isn't printing, check the paper.
5 If there isn't any paper, put some paper in the printer.
6 If the printer doesn't print, switch it off and wait for ten seconds. Then switch it on again.

Social English

6 Ask students to write the short form answers to the questions in the dialogue as quickly as they can.

[^3]7 Put students in pairs to practise the dialogue in 6.
8 Put students in pairs. Tell them to make similar dialogues to 6 , using the new information.

Extra activity

You could ask students to stand up and walk round the room asking other students similar questions to the ones in 6 .

Contents

1 Rules and warnings

Start here: making a list of safety rules in student's workplace or college
Listening and completing warnings: don't, might, must, mustn't
Reading: saying why signs have different colours and shapes - circular, round, triangular
Reading a text and matching examples with signs
Language: imperative, Always/Never, Do not/Don't + imperative, You must/must not/mustn't
Completing instructions with always, never, do, do not, must, mustn't
Transforming signs into sentences: No smoking signs \rightarrow Do not smoke here.

Language: could/might to express possible result Completing warnings using there's/there are, could/might Word list: arm, back, bare (hands), building site, burn, careful, chemical, circle/circular, circular triangle/ triangular, danger, electric shock, electricity, eye, factory, fire, gear, get (a shock), guard (on machine), hand, hard hat, hazard, high-voltage, hook, hurt, injure, laboratory, laser, lift, lighted match, machine, manual, mobile phone, poison, round ($=$ circular), rule, safety boots, safety gloves, saw (tool), service, shape, sign, small space, smoke, surface, touch, trap, warn, warning, wear, workshop

2 Safety hazards

Start here: listening and matching warnings with pictures Listening and matching warnings with possible results Speaking: saying the warnings and their possible results: Look out! There's a low beam in front of you. You could injure your head.
Making a list of safety hazards in the picture of an automotive workshop
Describing the hazards in the picture: There's some liquid on the floor. A cable is damaged.
Language: past simple was/were/there was/there were
Changing sentences about the hazards into the past:
There was some liquid on the floor.

Writing: completing a safety inspection report describing the hazards in the workshop, using the past simple.
Word list: bare wire, beam (= girder), box, brick, broken, cable, coiled, cone, damaged, drink, fall, fire extinguisher, fire exit, floor, food, gap, inspect, inspection, liquid, locked, mind ($=$ look out for), (safety) padlock, platform, stairs, trap, trip over, workshop

3 Investigations

Start here: discussing what's happening in a picture
Listening and completing a warning to a pilot from air traffic control with numbers
Reading: completing an incident report with details from a newspaper account of a near miss between two planes
Speaking: asking questions about the near miss incident, using Where? When? How high? What? How far? How many? and answering the questions
Language: asking questions in the past. Where were the planes? When did the incident happen?
Task: asking questions about an accident and completing an accident report form
Social English: inviting, accepting, and turning down an invitation, using we must, I can/can't, I'd like to, I'll call you, are you free?
Practising the dialogue
Making similar dialogues with different times and days
Word list: altitude/height, aviation, crash into, dense cloud, distance, emergency, flight path, girder, happen/take place, incident, injury, jet, job title, location, military, near miss, o'clock (aircraft position), pass, passenger, pass (tr), pilot, plane, receive (electric shock), sea level, steer, safety net, time, slip, take place, type

Briefing

This unit deals with ways of communicating about health and safety at work.

1 Rules and warnings

Sections 1 and 2 deal with safety rules (normally written down), safety signs (or symbols), and spoken (or shouted) warnings. Safety clothing and personal equipment include a hard hat (or safety helmet), safety gloves, safety boots, safety goggles (to protect the eyes) and overalls (clothing to cover the complete body). Other safety equipment found in a workshop includes a guard (to cover dangerous parts of a machine), a fire extinguisher (to put out fires) and warning cones (usually red and white plastic cone-shaped objects, placed around dangerous items or holes at ground level).
All buildings require a fire exit (for staff to leave the premises quickly in a fire), which must be unlocked and easy to access.
It is sometimes necessary to explain the reasons for safety rules in order to persuade less experienced staff to follow them. This is why a spoken warning often takes the form warning + explanation, for example Don't touch that wire! You might get an electric shock. Common expressions explaining dangers include get a(n electric) shock, injure (tr), hurt (tr), damage (tr), burn (tr), trap (tr) (Example: trap your hand in the gears), fall (intr), fall over (intr), fall into (a hole or gap), fall over (some bricks), trip (intr), trip up (intr), trip over (a cable on the ground).

2 Safety hazards

The ISO (see page 108) international standard safety signs illustrated in this unit follow a standard pattern. Warning signs (triangular + yellow and black) give a warning about a hazard or danger, such as fire risk or high-voltage electricity. Prohibition signs (circular + red, white and black with a diagonal red line through the picture) prohibit an action, that is, they tell people NOT to do something, for example Do not smoke here. Mandatory signs (circular + blue and white) tell people that they MUST do something, for example You must wear boots here.

3 Investigations

Section 3 deals with communicating about near-miss incidents (in which accidents almost happen, but do not actually lead to damage, injury or death). At work it is essential to report not only actual accidents but also near-miss incidents. There are usually lessons which can be learned from these incidents, and investigations into them usually lead to changes in workplace procedures so that accidents can be prevented in future. Near-miss
incident reporting is especially important in transport industries such as aviation, road and rail transport and shipping. The near-miss incident between two aeroplanes on page 78 is based on an actual event in the news, although some details have been changed. The dialogue in 2 illustrates the special language used between pilots and air traffic controllers. ConAir 286 is the name of the flight. If something is at twelve o 'clock it is straight ahead, at one o'clock means a little to the right, and so on. Negative contact means there is no radio contact between the two planes. Request vectors means the pilot is asking for instructions where to fly. Heading means the direction (given in degrees). All clear means there is no more danger. Resume own navigation tells the pilot to continue flying without further instructions from air traffic control. In the newspaper article about the near miss in 3, the Boeing's altitude (height above sea level) was 3505 m and the F16's altitude was 3527 m , and the distance between them was 36 m : this is because the F16 was not directly above the Boeing but at an angle above it. TACS stands for traffic alert and collision avoidance system; it automatically detects other planes nearby and steers the plane away from them.

Free leaflets on all aspects of workplace safety in the UK: http://www.hse.gov.uk/pubns/leaflets.htm
Sample incident and injury report form: https://www. hse.gov.uk/forms/incident/f2508.pdf
Safety signs: http://www.hse.gov.uk/pubns/indg184. htm
News report of a near-miss aviation incident: http:// news.bbc.co.uk/1/hi/wales/2095724.stm

Teacher's notes

1 Rules and warnings

Start here

1 Put students in pairs. If students work, pair them up with someone who works at the same workplace. Tell them to discuss the safety rules for their workplace or for their college and make a list of these rules. Tell them to keep this list for later in the lesson.
2 C953
Ask students to read the six warning sentences first. Then play the recording for students to complete the warnings with the words in the box.
Elicit the answers from students. Say: I don't want to wear a hard hat on the building site. Is it OK? and elicit the answer to the first question. (You must wear a hard hat on the building site.) Do the same for the other questions, e.g. I want to go through that door (Don't go through that door!).
Ask students: Is it certain that you get an electric shock with high-voltage electricity? and elicit You might to mean that it's a possible result of the danger.

1 must 2 Don't 3 must 4 Don't 5 might 6 mustn't

Q 53

1 You must wear a hard hat on the building site.
2 Don't go through that door!
3 You must wear safety gloves everywhere in the factory.
4 Don't touch that machine! It's very hot.
5 Be carefull High-voltage electricity. You might get an electric shock.
6 You mustn't use your mobile phone here.

Reading

3 Put students in pairs. Ask students to look at the warning signs in the text at the bottom of the page. Elicit the names of the shapes (circle and triangle). Ask them to discuss why they think that the signs have different colours and shapes. Do not confirm answers at this stage.
4 Ask students to read the text and check their answers to 3. Point out that triangular and circular are adjectives and triangle and circle are nouns. Write circle \rightarrow circular and triangle \rightarrow triangular on the board with the stressed syllables underlined to show that the stress moves on the adjective triangular. Point out to students that circular means the same as round.
Then ask students to match the examples with the signs.

Answerto 3:

They have different shapes to show different meanings: Triangular signs in yellow and black are warning signs. They warn you not to do something.
Round signs in red, white and black are prohibition signs. They tell you that you can't do something. Round signs in blue and white are mandatory action signs. They order you to do something.

Answers to 4:
$1 \mathrm{C} \quad 2 \mathrm{E} \quad 3 \mathrm{~B} \quad 4 \mathrm{D} 5 \mathrm{~A} \quad 6 \mathrm{~F}$

Language

always/never, don't imperatives and modal verbs must/mustn't

Go through the examples in the Language box with students. Explain that these are all ways to express rules and warnings. You can use a positive imperative form: (Always +) the bare infinitive, e.g. (Always) wear a hard hat here, a negative imperative: Never/Don't touch the machine, or the modal verb must/mustn't.
Check that students understand that Always is the opposite of Never, and tell them that these frequency adverbs both come before the imperative.
Explain that you use the infinitive without to after modal verbs, e.g. You must wear safety gloves. not Younust to twear safely gloves. To make negatives for modal verbs you use not, e.g. You mustn't use your mobile phone here. not Youdon't must use your mobile phome here. Point out that might is another modal verb.
Tell students that they'll find more information on other modal verbs in the Grammar summary on page 101 of the Course Book.

Extra activity

Students work with the same partner as in 1 . Tell them to write up three of the rules from their list, using You must or You mustn 't, or an imperative form, and to invent one 'false' rule. They then read out their rules to the class and the class guesses which rule is false.

5 Ask students to look at the six signs and to tell you what types of signs they are. (1,3,5 and 6 are prohibition signs and 2 and 4 are mandatory action signs.) Then ask them to complete the instructions for each sign with the words from the box.

1 Never 2 Always 3 Do not 4 must 5 Do 6 mustn't
6 Ask students to look at the prohibition signs. Tell them to write instructions for these signs using the imperative.

1 Do not smoke here.
2 Do not use a mobile phone here.
3 Do not run here.
4 Do not enter here.
5 Do not exit here.
6 Do not park here.

Go through the notes about might and could with students. Remind students that might means a possible result of a danger or hazard, and tell them that could and might mean the same thing. Tell them that injure also means the same as hurt. You could also point out that in English injure and hurt are reflexive verbs: You might injure/hurt yourself on that machine.

7 Ask students to look at the warning signs in the margin. They then complete the warnings about each one with the words and phrases in the box.
To check the answers, you could divide the class in two. Ask one half of the class to read out the warning and the other half to read out the result.

```
1 could/might
2 There's, could/might
3 could/might
4 There are, could/might
```


Extra activity

Ask students to find a warning sign not shown in this unit and write a short text to go with it.

2 Safety hazards

Start here

1 54

Write Be careful! on the board. Ask students what other phrases they know for Be careful!, when you want to warn someone about a danger. (Look out! Watch out! Take care!') Pre-teach mind. Tell students that when you tell someone to mind something, you're also telling someone to be careful, warning them to look out (for something) as they might hurt themselves or damage the object. For example, when you say Mind your head, you're warning someone to be careful of their head as they might hurt it. Play the recording for students to listen and match the pictures with the warnings.

```
1D 2A 3C 4F 5E 6 B
```


C. 54

1 Look out! There's a low beam in front of you.
2 Be careful! There are some bricks on the floor.
3 Watch out! There's no guard on the gears.
4 Mind the gap! There's a gap between the train and the plattorm.
5 Carefull There are bare electrical wires on the wall.
6 Look out! The water is very hot.
2 Play the recording again and ask students to write the warning number from the recording in the appropriate place in the table.

Warning	Possible result
6	You might burn your hands.
1	You could injure your head.
4	You might fall into the gap.
2	You could trip over the bricks.
3	You might trap your hand in the gears.
5	You could get an electric shock.

Speaking

3 Go through the example with the class. Ask them to look at Warning 1 from the table in 2 and its possible results, and ask them to look at the picture it refers to in 1 (picture D). They then say the warnings and their possible results. Tell them to use There's ... or There are ... to give a warning, and to use could or might to give the possible result. Remind them to start each one with warning phrases like Look out! Be careful!, etc.

4 Put students in pairs. Tell them to look at the picture of the car workshop. They have to discuss the safety hazards they can see in the picture with their partner and to make a list of the hazards. Remind them of the work they did on countable and uncountable nouns in Unit 7, and that they need to use There's $a /$ some ... for singular nouns and uncountable nouns, and to use There are some ... for plural countable nouns. You could give them an example to start them off, e.g. There's some liquid on the floor. Pre-teach cone and coil, by drawing a simple picture of a cone on the board and some coiled wire. Tell them that there are at least ten safety hazards.
When they've finished, students can then compare their list with another pair. Don't confirm answers at this stage as they will be checking them in the next exercise.

5 Ask students to look at the photo of the man in the margin and say what they think his job is. Then tell them to imagine that they are the safety inspector inspecting the workshop in 4. They have to describe the hazards in the workshop using the words in the box.
Tell students to use the words and phrases in the table to describe the safety hazards they can see in the picture in 4. Point out that the sentences on the left with There's \ldots and There are ,.. describe the hazards in the workshop, and the sentences on the right with the verb be and the past participle describe the result of an action. You could remind students of the work they did on this in Unit 8.
When checking the answers, make sure students can find the hazards they missed in the picture in 4 .

There's some liquid on the floor.
2 There are some bricks on the floor.
3 There are some boxes on the stairs.
4 There's some food on the benches.
5 There's some drink on the benches.
6 There are some tools on the floor.
7 There are no fire extinguishers.
8 There's a fire exit.
9 There are no cones around the bricks.
10 There are no guards on the machines.
11 A cable is damaged.
12 Two windows are broken.
13 The fire exit is locked.
14 Some cables are coiled.

Language

Past simple of is and are

Go through the examples in the Language box with the students and explain that the past of be is was and were. You use was with I/he/she/it, and were with you/we/they. Ask them to look at the examples in the table and find these sentences in the present simple in the table in exercise 5 .
Tell students that they'll find more information on the past simple of be in the Grammar summary on page 104 of the Course Book.
6 Ask the students to change the other sentences in 5 into the past as a whole class. Check that they're pronouncing was /wdz/.

Writing

7 Ask students to read the safety inspection report about the workshop in 4 . Then tell them to look back at the information in 5 and complete the report, using the past simple. Tell them to add any more information that they can.

1 There were no fire extinguishers anywhere in the workshop.
2 There was a single fire exit, but the door was locked with a padlock.
3 There was some liquid on the floor,
4 There were some bricks on the floor, but there weren't any cones around them.
5 There were some boxes on the stairs.
6 There was some food and drink on the benches.
7 There were some tools on the floor.
8 There were no guards on the machines.
9 A cable was damaged and some of the cables were coiled.
10 Two windows were broken.

8 Put students in small groups. Tell them to write at least ten safety rules for the workshop in the photo in 4. Remind students about the work they did in 5 of the previous lesson on imperatives, always, never, must and mustn't. Point out that they can also write rules with No plus the -ing form: No eating or drinking, etc.

Extra activity

Ask students to work in small groups and write a list of safety rules for their classroom.

3 Investigations

Start here

1 Put students in pairs. Ask students to look at the picture of the two planes and answer the questions. Go through the answers with the class.

Possible answers:

1 The planes are going to crash into each other.
2 The plane on the left is moving north, and the plane on the right is moving south-west.
3 The air traffic controller will talk to the pilot.

$2 \triangle 55$

Ask students to look at the diagram of the clock in the margin and explain that clock references are used to give the relative location of planes. Ask them what the position of the blue plane is to the red plane (Two o'clock).
Tell students that they're going to listen to the air traffic controller warning one of the pilots in the picture about the danger his plane is in. Play the recording for students to complete the dialogue.
Ask individual students to read out their answers. Make sure that they're using single digit numbers for the flight numbers and also for the direction 045 (oh four five).

1 Two $2150 \quad 3$ right $\quad 4045 \quad 585 \quad 6045 \quad 785$

Q 55

[AC = Air traffic controller; $\mathrm{P}=$ Pilot]
AC: ConAir 286. Unknown traffic. Two o'clock, 150 metres. Crossing right to left.
P: ConAir 286. Negative contact. Request vectors.
AC: Turn right. Heading 045 . Descend. 85 metres.
P: Right turn. Heading 045. Descending. 85 metres. ConAir 286. ...
C: Con Air 286. All clear. Resume own navigation.
P: Roger. ConAir 286.

Reading

3 Ask students to look at the heading and the photo and to explain what near miss means. Tell students that the newspaper article gives details about the plane incident from the recording. Ask them to read the article quickly and not to worry about any words they don't know.

Ask students what types of planes were in the near miss. Then ask students to look at the incident report and to write the type of plane for Plane 2. Go through the other headings in the form and elicit what altitude means (the height of the plane above sea level). Tell them to find the information in the newspaper article to complete the rest of the incident form.

Aviation near-miss incident report

Date of incident: 25th November
Time: 22.17
Location: Northern England, 10 km west of Manchester Distance between two planes: 36 metres

Plane 1

Type: Boeing 757 passenger plane
Altitude: 3505 metres above sea level
Flight number: BA 4058
Number of passengers: 234
Flying from: Manchester
Flying to: Greece

Plane 2

Type: F16 military plane
Altitude: 3527 metres above sea level
Flight number: -
Number of passengers: none
Flying from: Scotland
Flying to: the south of England

Speaking

4 In this exercise, students practise asking and answering Wh- questions in the past simple. Before they start, go through the Language box with them. (See below.)
Put students in pairs. Ask them to decide who wants to be the investigator asking questions about the nearmiss incident and who wants to be the pilot and answer the questions about it. The investigator then asks the pilot questions about the near-miss incident, using the prompts, and the pilot answers the questions, using the information from the incident report form on page 78. Point out that take place means the same as happen.

1 Where did the incident happen?
(It happened) 10 km west of Manchester.
2 When did it take place?
(It took place) on 25 th November.
3 How high was the Boeing?
(The Boeing was) 3505 metres above sea level.
4 What was the height of the F16?
(The F16 was) 3527 metres above sea level.
5 What time did the F16 pass the Boeing?
(The F16 passed the Boeing) at 22.17 .
6 How far was the jet from the passenger plane? (The jet was) 36 metres (from the passenger plane).
7 What was the flight number of the passenger plane? (The flight number of the passenger plane was) BA 4058.
8 How many passengers were in the Boeing? (There were) 234 passengers (in the Boeing).

Language

Past simple

Go through examples of the past simple question forms with students. Explain that you form past simple be questions with was or were, and other past simple questions with the auxiliary did before the main verb. Point out it's not necessary to repeat the subject and verb in the answer.
Tell students that they'll find more information about questions in the past simple in the Grammar summary on page 102 and page 104 of the Course Book.

Task

5 Put students in pairs. Ask Student A to turn to page 115 and read about their incident.
Ask Student B to look at the report form. Tell them they have to ask Student A questions about their incident and complete the form. Students then swap roles. Ask Student B to turn to page 118 where they will find a report about their incident. Student A asks Student B questions to complete the form on page 79 .

Student A:

About the accident:

Date: 15 th July
Time: 14.46

Location: Level I scaffolding Height above ground: 10 m
Type of accident (tick one box):

- lifted something and injured self
- received an electric shock
- slipped, tripped or fell on the same level
- fell from a height
- other

About the injured person:

Name: Pedroz Gomez
Job title: Electrician
Injury: Small 2 cm burn on right arm

Description of accident:

Touched a live wire with his right arm and received a small electric shock.

Student B:

About the accident:

Date: 23 rd November
Time: 09.38
Location: 3rd floor of the new builing Height above ground: 20 m

Type of accident (tick one box):

- lifted something and injured self
- received an electric shock
- slipped, tripped or fell on the same level
- fell from a height
- other

About the injured person:
Name: Gino Petri
Job title: Builder
Injury: Cut his leg.

Description of accident:
He tripped over a metal girder and fell from the 3rd to 2nd floor into a safety net.

Social English

6 Ask students to complete the dialogue with the words in the box.

$$
1 \text { must } 2 \text { I'd } 3 \text { Are } 4 \text { can't } 5 \text { don't } 6 \text { I'll }
$$

7 Put students in pairs to practise the dialogue in 6 .
8 In the same pairs, students make similar dialogues, changing the times and the days and using the activities listed. They can then go on to make further dialogues using activities of their own choice.

Review Unit E

Answer key

| 1 | 1 | supports; pushes | 4 steers |
| :--- | :--- | :--- | :--- | :--- |
| 2 | rotate; move; propels | 5 turns | |
| | 3 control; increases | | |

21 work 2 drives 3 suck 4 contains 5 moves

31 on the left
4 to the right
2 in the centre
5 below
3 between
6 above

4

$\mathbf{1}$ digital receiver	4 modem
2 battery	5 starter motor
3	router

51 suspended from
2 connected to
3 attached to
4 disconnected from

5 attached to; suspended from
6 mounted on; connected to

7 If the radio doesn't work, check the adapter. If the adapter isn't connected, connect it to the radio. If the adapter is connected, check the LED. If the LED isn't on, check the power switch. If the LED is on, press the START button.

6

8
4 could/might
5 Always
6 might/could; don't
9

$\mathbf{1}$ must	$\mathbf{4}$ could/might
$\mathbf{2}$ never	$\mathbf{5}$ Always
$\mathbf{3}$ mustn't	$\mathbf{6}$ might/could; don't

1 found	9 told	16 switched off
2 was	10 took place	17 switched
3 were	11 put on	18 touched
4 were	12 climbed	19 wasn't
5 had	13 was	20 was
6 didn't wear	14 had	21 was
7 was	15 shouted	22 didn't receive
8 were		

10 Where did the incident take place?
2 When did it happen?
3 Did the repair man wear a hard hat?
4 How did he climb to the cable?
5 How high was the cable?
6 What was the problem?
7 Did he get an electric shock?
8 Was the cable connected to the mains supply?

111 The emergency exit must not be locked.
2 Never leave ropes on the ground.
3 Check fire extinguishers work every week.
4 Always wear safety hats, safety boots and safety gloves.
5 Don't coil high-voltage cables.
6 Never leave tools on the ground.

Projects

12 Students can do their research on the Internet or in a library, and in their own language if they wish. They must then write their results in English.

Quick test answer key

Part 1: Vocabulary and grammar

1	$\mathbf{1}$ controls	$\mathbf{4}$ supports
2 increases	$\mathbf{5}$ attached to	$\mathbf{7}$ triangular
$\mathbf{3}$ turns	$\mathbf{6}$ connected to	

21 c 2 e 3 d 4 b 5 a

3
1 supports
3 starts, stops
2 move
$4 \quad 1$'s 2 was 3 aren't 4 's 5 weren't

51 Yes, they are.
4 Yes, you can.
2 No, he hasn't.
5 No, he didn't.
3 No, it doesn't.
61 If the green light isn't on, check the cable is connected to the printer.
2 If the cable is damaged, replace it with a new one.
3 If the gears don't have a guard on them, put a guard on the gears.
4 If the computer doesn't start, check the power source and press the power button.

71 Always wear
4 Don't enter
2 could/might trap
5 must lock
3 mustn't smoke

81 What happened?
2 Where did the accident take place?
3 When was the accident?
4 How many passengers were on the train?
5 Did you see the accident?

Part 2: Reading and writing

Reading

1 the basket
2 the flames
3 the balloon
4 The wind
5 the blast valve

Writing

1 There was some oil on the floor.
2 There were no fire extinguishers.
3 Two windows were broken. / There were two broken windows.
4 The doors were locked.
5 There was no guard on the machine.

Review Unit E Quick test

Part 1: Vocabulary and grammar

1 Choose the correct word to complete the sentences.
1 The steering wheel controls/rotates the car.
2 The accelerator increases/moves the speed of the car.
3 The driver propels/turns the car left.
4 The body pushes/supports the engine.
5 The brakes are attached to/suspended from the handlebars of the bike.
6 The chain is connected to/mounted on the wheels.
7 The warning signs are triangle/triangular in shape.
(7 marks)
2 Match the first half of the sentences 1-5 with their
endings a-e. endings a-e.
1 Don't burn your hand
a) on the beam.
2 Careful! you might get an
b) the bricks on the floor. electric shock.
3 You could trap your hand
c) in the hot water.
4 Don't fall over
d) in the machine.
5 You might injure your head
e) High-voltage electricity here.

3 Complete the sentences about skateboarding with the correct form of the verbs in the box.
move protect start stop support

1 The board \qquad the rider.
2 The wheels \qquad the board forwards.
3 The rider \qquad and \qquad the board with his feet.
4 The helmet, knee pads and wrist pads \qquad the skateboarder from injury.
(4 marks)
4 Complete the sentences with the correct form of the present simple or the past simple of the verb be.
1 Look out! There \qquad a low beam in front of you.
2 There \qquad some oil on the floor yesterday.
3 There \qquad any guards on these machines. Please put some on them.
4 We can't use this fire extinguisher. It \qquad broken.
5 That's good! The computers \qquad damaged in the fire.

5 Write short answers for these questions.
1 Are the lights on?
\qquad
2 Has Gavin connected the router to the computer?

3 Does the DVD player work?
\qquad
4 Can I help you?
\qquad
5 Did he burn his hands?

(5 marks)
6 Rewrite these sentences beginning with If.
1 Is the green light on? - NO - OK. Check the cable is connected to the printer.
If \qquad
2 Is the cable damaged? - YES - OK. Replace it with a new one.

If \qquad .

3 Do the gears have a guard on them? - NO - OK. Put a guard on the gears.
If \qquad ـ.

4 Does the computer start? - NO. Check the power source and press the power button.
If \qquad .
(4 marks)
7 Complete these sentences with the words in the boxes.

```
always could/might don't must mustn't
```

```
enter lock smoke trap wear
```

1 \qquad safety gloves when you use this machine.
2 Be careful! You \qquad your hand on the guard.
3 You \qquad in this building.
4 \qquad this building. It's not safe.
5 You \qquad the door when you leave.

8 Write the questions for these answers in the past simple, using the words in brackets.

1
There was a train accident.
2
take place)
Near the station.
3
accident)
It was about two hours ago.
4
(passengers/be/on the train)
About 200.
5
the accident)?
No, I didn't.
(5 marks)

Part 2: Reading and writing

Reading

Read the text. What do these pronouns mean?

Hot air balloons

Hot air balloons consist of a large bag ('balloon') that holds hot air. You stand in a basket and the balloon propels you through air. The basket is suspended from the balloon by steel ropes and it can support
5 up to four people.
In order to inflate the balloon, large fans blow cold air into it. There's a propane gas heater mounted on the basket. It sends red-hot flames upwards into the balloon. These heats the air inside the balloon. When
10 the air is hot, the balloon rises, A rope is attached to a vehicle. When the balloon is off the ground, the support crew release it.
The wind controls the balloon's speed and direction. This varies at different altitudes. The blast valve 15 controls the flow of the gas to the burner, You use it to change the height of the balloon.

1 it (line 4) \qquad
2 These (line 9) \qquad
3 it (line 12) \qquad
4 This (line 14) \qquad
5 it (line 15) \qquad (5 marks)

Writing

Read the notes from the safety inspector. Then write the Safety inspection report.

Eastgate Repair workshop

Oil on the floor
No fire extinguishers
Two broken windows
Locked doors
No guard on the machine

Safety inspection report for Eastgate Repair workshop

Inspected on 3rd August by J. D. Simmons.
\qquad

Contents

1 Pistons and valves

Start here: putting parts of a spray bottle together
Discussing how a spray bottle works
Reading: matching descriptions of four stages of pump cycle with diagrams
Language: to after cause, allow; bare infinitive after make, let; from + gerund after stop, prevent
Making true sentences about the spray pump using above verbs and structures
Transforming sentences with cause, make, let, allow, prevent and stop structures
Testing cause, allow, make, let, stop and prevent structures by deleting the wrong words in a text about piston pumps
Word list: allow/cause (sth to happen), chamber, contract, expand, explode, flow, fluid, force, high/low pressure, increase/decrease, inlet/outlet valve, let/make (sth happen), liquid, motor, nozzle, open/close, overflow pipe, piston, piston pump, powerful, prevent/stop (sth from happening), pump, shaft, spread, spring, trigger, tube

2 Switches and relays

Start here: quiz to introduce parts of electrical circuit and their symbols
Listening to and naming sounds
Reading: a description of the circuit of a burglar alarm.
Discussing how the burglar alarm works and labelling the circuit diagram
Guessing how the text continues
Reading the continuation of the burglar alarm text and checking answer
Answering questions about the text
Language: completing sentences with allow, cause, let, make, prevent, stop to check meaning and structure.
Speaking: explaining how the burglar alarm works Word list: battery, bell, burglar, buzzer, circuit, click, coil, conductor, contact, current, earth, electro-magnet, iron bar, lamp, magnet, metal strip, next to, produce, relay switch, spring, strip (of metal), switch, terminal, wire

3 Rotors and turbines

Start here: quiz about wind turbines. Discussing what students know about wind turbines
Listening to a radio programme about wind turbines and checking answers to quiz
Vocabulary: labelling a diagram with parts of a wind turbine
Reading a short description of the location of parts and checking answers
Reading: reading a web page interview about how a wind turbine works and answering questions
Identifying what the proforms it and one in the text refer to
Language: completing sentences with cause, make and prevent
Speaking: explaining how a wind turbine works
Social English: making suggestions with let's and why don't we?
Word list: anemometer, attached to, automatically, blade, blow, brake, contain, controller, damage, data, download, East, gear, generator, high-/ low-speed shaft, housing $(=$ casing, container), hub, measure, minimum/maximum, mounted on, North, rotate, rotor, send, South, transmit, tower, turn, West, wind turbine

Briefing

This unit deals with the relationship between cause and effect, relevant to a wide range of technologies and industries. Specifically it looks at causation (where an action or device causes something to happen), permission (where an action or device allows or permits something to happen, and prevention (where an action or device prevents or stops something from happening).

1 Pistons and valves

Section 1 deals with pistons and valves, which are components of piston pumps. In this type of pump, the piston moves forwards and backwards (or up and down) inside a sealed cylindrical chamber or container. A set of valves controls the direction of flow of the fluid; they open and close in such a way that the fluid can only flow through the chamber in one direction. When the piston moves through the chamber, it increases the pressure on the fluid in front of it and decreases the pressure on the fluid behind it. This change of pressure forces the fluid to flow from an area of higher pressure to an area of lower pressure. The changes of pressure also make the valves open or close depending on their location and structure. An inlet valve opens to allow fluid into the chamber, but closes to prevent it from flowing back out through the same valve. An outlet valve opens to allow fluid out of the chamber, but closes to prevent it from flowing back in.

2 Switches and relays

Section 2 deals with switches and relays in an electrical circuit. A switch simply opens or closes a circuit (see Unit 5), and can be operated manually by pressing a button or switch lever. A relay is a more complex type of switch: it is not controlled manually but by an electromagnet. An electro-magnet consists of an iron core (cylindrical bar) and a coil of metal wire twisted around it. There are two circuits. When current flows through the coil and around the core in the first circuit, the core becomes a magnet. The magnetised core then pulls the relay switch towards it, which either opens or closes a second circuit. The circuit diagram in 4 shows how this works. The burglar opens the window. This opens the first circuit (the window circuit). Power is switched off, which removes power from the coil. The iron core loses its magnetism. This releases the relay switch in the second circuit (the buzzer circuit). This circuit closes and the buzzer sounds. The sound of the buzzer is caused by the flexible metal strip moving up and down quickly as the circuit rapidly switches on and off because of the movement of the strip.

3 Rotors and turbines

Section 3 deals with wind turbines. A turbine is a type of generator that converts rotational movement into electrical power. It is similar in principle to the dynamo (see Unit 3). The rotor is the rotating part of the turbine. The wind blows and turns the blades, the blades make the shafts rotate, and the shafts create movement inside the generator. Inside the casing (or nacelle) of the wind turbine, there are two shafts, linked by gear wheels. This is because the rotation of the blades is too slow to generate electricity. The low-speed shaft (from the blades) is attached to a large gear wheel, and the highspeed shaft (to the generator) is fixed to a small gear wheel. The large gear wheel rotates slowly and makes the smaller gear wheel rotate rapidly. The high-speed shaft rotates inside the generator and produces electricity. In the cutaway diagram of the wind turbine on page 88, the yaw (or direction) drive is shown. This mechanism turns the whole nacelle from left to right, controlled by the controller (computer) using data about the wind direction which comes from the vane.

Pumps: http://www.animatedsoftware.com/pumpglos/ pumpglos.htm
Spray bottle pumps: http://science.howstuffworks. com/question673.htm/printable
Electromagnets: http://electronics.howstuffworks. com/electromagnet.htm/printable
Relay switches: http://www.howstuffworks.com/relay. htm
http://www.howstuffworks.com/burglar-alarm1.htm
Generators and dynamos: http://en.wikipedia.org/ wiki/Electrical_generator
Wind turbines: http://science.howstuffworks.com/ wind-power.htm/printable
Gears: http://www.howstuffworks.com/gear.htm/ prîntable

1 Pistons and valves

Warmer

Ask students to name all the different types of products you can find in spray bottles.

Start here

1 Ask students to look at the picture of the incomplete spray bottle. Tell them to draw arrows from each part to show where they fit into the bottle. They can then compare where they've put their arrows on their spray bottle with a partner. Then tell students to look at the completed spray bottle on page 113 to check their answers.
2 Put students in pairs. Tell them to look at the incomplete diagram of the spray bottle in 1 and the completed one on page 113 and discuss with their partner how it works and what each part does. Remind them of the work they did in Unit 5 and revise some vocabulary, e.g. flow/moves into/ out of. You could also teach the word squeeze for squeeze the trigger. Do not confirm answers at this stage, as they will read about how the pump works in the next exercise.

Reading

3 Ask students to look carefully at the four diagrams which show the different stages of the working of a spray bottle. Then ask students to read the captions about how the spray bottle works and to match each of the captions with one of the diagrams. Point out the notes and diagrams about increase and decrease in the margin.

Caption 1: B

Caption 2: D
Caption 3: C
Caption 4: A

Extra activity

Ask students to look back at the captions and find the opposites for inlet, increase, close, stop and flow into.

Language

Verb constructions with cause, make, let, allow, prevent and stop

Go through the example sentences in the Language box with students. Explain that let means the same as allow (i.e. something can happen), and cause means the same as make (i.e. force something to happen). The difficulty for students is that you use different verb constructions with these words. Some verbs such as cause and allow are followed by the object + infinitive, e.g. ... causes/allows the water to flow out. Some verbs such as make and let are followed by the object + infinitive without to, e.g. ... makes/lets the water flow out. Prevent means the same as stop (i.e. stop something from happening). Prevent and stop are followed by the object + from and the gerund, e.g. ... prevents the shaft from moving. Students will need a lot of practice with these constructions.
4 Ask students to look back again at the diagram of the spray pump and tell them to make true sentences about how it works, using the words and phrases in the table. Tell them that they can then look back at the captions in 3 if they need extra help.

The trigger makes the piston move in.
The piston makes the pressure increase/decrease.
The spring makes the piston move in and out.
The two valves let the air and water flow in or out. The two valves allow the air and water to flow in or out. The inlet/outlet valve prevents/stops the water from flowing in.
The inlet/outlet valve lets the water flow out.
The inlet/outlet valve allows the water to flow out. High pressure causes the outlet valve to open. / High pressure makes the outlet valve close.
High pressure makes the inlet valve close. / High pressure causes the inlet valve to close.
Low pressure causes the outlet valve to close. / Low pressure makes the outlet valve close.
Low pressure causes the inlet valve to open. / Low pressure makes the inlet valve open.

5 Students rewrite each sentence so that it has a similar meaning. They must replace the verbs in italics with the correct form of the verbs in brackets. Tell them they will need to make other changes to the sentences such as adding to or from and using the gerund instead of the infinitive.
Do an example with the class first. They rewrite the rest of the sentences on their own. They can then compare their answers with a partner.

1 Heat makes a metal expand and cold causes it to contract.
2 Overflow pipes allow extra water to flow out of the tanks.
3 The valve on the oil well prevents the oil from exploding.
4 These powerful pumps make the water rise 30 m up the hill.
5 These fire extinguishers stop electrical fires from spreading.
6 Show your ID card and the guard will let you enter the factory.

6 Ask students to look at the illustration of the piston pump and ask them to try and explain how it works. Then ask them to read the text quickly to check their answer. Tell them not to delete the wrong words in the brackets yet.
Tell students to read the text again and this time to delete the wrong words in the brackets as they do so. They can then check their answers with their partner before you check with the class.

1 tomove	7 toflow
2 tomove	8 to deerease
3 inerease	9 open
4 open	10 to flow
5 flow	11 to ctose
6 toclose	12 to flow

2 Switches and relays

Start here

1 Put students in pairs. Ask them to look at the electrical symbols. Tell them to match the words with the correct symbol. Tell them to look at page 109 when they've finished, to check their answers.
conductor; lamp; buzzer; bell; earth; switch; terminal; battery

2 56

Ask students to look at the list of sounds. You could allow them to discuss with a partner what things they associate with these sounds. Play the recording for students to identify the sounds. They could then compare their answers with a partner before you check with the class.

```
1 alarm bell 2 beep 3 buzzer 4 horn 5 dial tone
6 door bell }7\mathrm{ click }8\mathrm{ siren
```


256

1 [Urgent sound of alarm bell]
2 [Sound of beep in automatic phone]
3 [Sound of buzzer]
4 [Sound of car horn]
5 [Sound of dial tone after picking up phone]
6 [Sound of door bell, ding-dong]
7 [Sound of mouse click]
8 [Sound of siren]

Reading

3 Ask students to look at the diagrams and to tell you what is happening.
Then put students in pairs. Ask them to look at the diagrams of the window burglar alarm and discuss how it works. Do not confirm answers at this stage
4 Ask students to read the web page about how a burglar alarm works and compare it with their answers to 3 . Tell them to label the diagram of the burglar alarm in the text as well as the diagrams in 3 .

1 switch 2 spring 3 terminal 4 buzzer 5 battery 6 wire

5 Ask students to discuss the answer to Bob's second question with their partner. Then ask students to tell you their ideas, but do not confirm answers at this stage.

6 Ask students to read the next part of the web page about the burglar alarm to check their answer to 5 . Tell them to look at the diagram of the buzzer circuit as they do so.

Because the buzzer has its own circuit.

7 Ask students to read the questions about the complete burglar alarm and then tell them to quickly find the answers to them in the text. They can then compare their answers with a partner before you check with the class.

1 two (the window circuit and the buzzer circuit)
2 one. An electro-magnet is an iron bar with a coil of wire around it; it is magnetic when a current flows in the coil.
3 two
4 the current

Language

8 This exercise revises the meaning and structure of the verb constructions the students have studied in the previous lesson. Ask students to complete the sentences with the correct form of the verbs in the box. Tell them to look back at the Language box on page 85 to help them if necessary, and remind them that allow and cause are followed by the object + the infinitive, make and let are followed by the object + infinitive without to, and prevent and stop are followed by the object + from + gerund.

$\mathbf{1}$ makes	$\mathbf{4}$ stops/prevents
$\mathbf{2}$ prevents/stops	$\mathbf{5}$ causes
$\mathbf{3}$ allow	$\mathbf{6}$ lets

Speaking

9 Put students in pairs. Students try to remember how the burglar alarm works. Tell them to cover the text in 6 , but to use the diagram to help them. Then ask them to explain how it works with their partner. Go round the class, listening to students as they are explaining the burglar alarm system, and making sure that they're using the verb constructions that they've studied correctly.

3 Rotors and turbines

Start here

1 Ask students to look at the photo of the wind turbine. Find out if they have any wind turbines near where they live and what they think about them. Then ask them to read the quiz and answer the questions. Do not confirm answers at this stage.
2.657

Play the recording for students to check their answers to the quiz in 1 .

1 b 2 b 3 a 4 c

57

The German company Enercon manufactures the world's tallest wind turbine. The tower of this huge turbine, the Enercon E112, is 186 metres tall. But the world's highest wind turbine is about 2300 metres up a mountain in Gütsch in Switzerland. The tower of the wind turbine isn't very tall, but at 2322 metres, it's the highest in the world.
Wind turbines start producing power at the minimum wind speed of about 15 kilometres per hour. If the wind speed is less than 15 kilometres per hour, the wind turbine doesn't switch on.
The maximum wind speed for a furbine is about 90 kilometres per hour. If the speed of the wind is more than this, the turbine switches off and the blades stop.

Extra activity

You could write up the following questions about the recording on the board for students to answer:
What country is the highest wind turbine in? (Switzerland)
Is it the tallest wind turbine in the world? (No, it isn't.)
What happens when the wind speed is less than 15 kilometres per hour? (It doesn't switch on.)
What happens when the wind speed is more than 90 kilometres per hour? (The turbine switches off.)

Vocabulary

3 Ask students to look at the diagram and label it with the parts of a wind turbine in the box. Tell them that they need to use one of the words twice. Do not confirm answers at this stage.
4 Ask students to read the text and check their answers to 3 . Draw students' attention to the diagram of the rotor. Ask them what verb they use to explain the movement of the rotor (rotate). Then write the noun rotor and the verb rotate on the board, underlining the stressed syllables to show that the stress shifts in the verb.
1 shaft 2 gear 3 housing 4 generator 5 shaft
6 brake 7 hub 8 blade

6 brake 7 hub 8 blade

Reading

5 Ask students to read the web page interview about how wind turbines work. Then tell them to quickly find the answers to the questions in the text.

1 The large gear.
2 The controller collects data about the wind speed. It also prevents the wind from damaging the turbine by switching off the turbine.
3 The high-speed shaft.
6 Ask students to look at the words circled in the text in 5. Tell them that you can also use one like it to avoid repeating the noun. Tell them to read the information in the sentences before these words to help them find out what they refer to.

1 b 2 b 3 a

Language

7 Ask students to complete the sentences with the correct form of the words in the box. Encourage them to do this exercise quickly.

$$
1 \text { makes } 2 \text { prevents } 3 \text { cause }
$$

Extra activity

Write the correct sentences on the board. Then prompt students to give an alternative for each sentence, using the verbs in brackets:
1 The wind makes the blades rotate. (cause)
2 The controller prevents the wind turbine from operating in a strong wind. (stop)
3 The blades cause the low-speed shaft to rotate. (make)

Speaking

8 Put students in pairs. Tell them to cover the reading text in 5. Tell them to explain how the wind turbine works, using the diagram in 3 . Remind them to use the verbs cause, allow, make, let, prevent and stop.

Social English

9 Go through the explanation with the class and tell students that you can use Let's ...? to make a suggestion. (Let's is the contracted form of Let us. The full form is never used when making suggestions.) Tell students that Why don't we...? has the same meaning as Let's.
Ask students to read the situations and make suggestions. When they've finished, read out each sentence and elicit a suggestion for each one, and reply to the suggestion, e.g. OK. Great. Good idea. Sorry, I can't. Sorry, I'm busy.
Students can then pair up and take it in turns to practise making suggestions and giving responses, using the sentences in 9 .

12 Checking and confirming

Contents

1 Data

Start here: preparing questions about the Mars rover
Reading: skim reading a text about the Mars rover and checking if any questions were answered
Reading the text again and completing a specification chart
Vocabulary: ways to express approximation
Completing sentences by changing approximation symbols into words
Speaking: writing questions for answers about the Mars rover, using information from the text
Practising asking and answering the questions about the Mars rover
Guessing answers to a quiz about Mars and checking answers with a partner: Is that right? Yes, that's right. No, that's wrong. Change it to ...
Word list: about, analyse, antenna, approximately, around, at least, average, body, break, camera, collect, daily fire, distance, diameter, dig, ground, height, include/exclude, instrument, laser beam/gun, length, less than/more than, mass ($=$ weight), mast, million, minimum/maximum, mobile, obstacle, operate, orbit, over, piece, powder, range, remain, robot (arm), rock, rotation, rover, sample, scientific soil, speed, support, surface, suspension system, titanium, weight, wheel, under, up to

2 Instructions

Start here: making a list of instructions to give the Mars rover to make it move
Listening and completing a dialogue, using the present continuous, to confirm actions: Move forwards. I'm moving forwards.

Listening: completing a dialogue. Revision of imperatives and present continuous (positive, negative, interrogative)
Task: discussing why there is a long time delay when the rover responds to instructions on Mars

Completing a table giving instructions, confirming instructions and reporting what's happening: Make the rover move forwards 20 cm . OK. I'm pushing the joystick forwards. The rover isn't moving. Now it's moving forwards.
Speaking: practising the dialogue
Memory test: looking at pictures then writing down what the vehicles are doing
Word list: astronaut, button, confirm, controller, forwards, forwards/backwards, helicopter, hill, joystick, motorboat, move, plane, press, reverse, roll, rotate, shuttle, to the right/ left (of), wheel

3 Progress

Start here: listening to a description of tasks on a space station and completing the list with verbs
Vocabulary: finding the opposites of words in the text: connect/disconnect, etc.
Listening: completing a dialogue based on a GANNT chart; revising present perfect, past simple and will
Language: yet in present perfect questions and negatives
Speaking: making similar dialogues based on a GANNT chart

Task: checking a partner's progress based on a GANNT chart and completing a task checklist

Word list: attach, assemble, bring, check, complete, connect, disconnect, dismantle, equipment, finish, inspect, install, lubricate, nose cap, oxygen, prepare, photograph, progress, remove, repair, replace, space station, spacewalk, robot arm, take, tank, test, ventilation, waste tank, water system

Briefing

This unit deals with ways of checking data, confirming and giving feedback on spoken instructions and checking on progress in a project.

1 Data

2 Instructions

Sections 1 and 2 look at the Mars Science Laboratory (MSL). This is a NASA rover (mobile exploratory robot) which is scheduled to launch in December 2009 and perform a precision landing on Mars in October 2010. This rover is three times as heavy and twice the width of the Mars Exploration Rovers (MERs) that landed in 2004. It will carry more advanced scientific instruments than any other mission to Mars. The international community will provide most of these instruments. The MSL rover will be launched by an Atlas V 541 . Once it has landed safely on the surface of Mars, MSL will analyse dozens of samples scooped up from the soil, and cores from rocks. MSL will be expected to operate for at least 1 Martian year (approximately 2 Earth years) as it explores with greater range than any previous Mars rover. Its main purpose will be to investigate the past or present ability of Mars to support life.
The robot arm extending from the front of the rover is designed both to position some of the rover's instruments onto selected rocks or soil targets and also to collect samples for analysis by other instruments. Near the base of the arm is a sample preparation and handling system designed to grind samples, such as rock cores or small pebbles, and distribute the material to analytical instruments.
The mast, rising to about 2.1 metres above ground level, supports two remote-sensing instruments; the MastCam (mast camera) for stereo colour viewing of surrounding terrain and material collected by the arm, and the ChemCam (chemistry camera) for analysing the types of atoms in material that laser pulses have vaporised from rocks or soil targets up to about nine metres away.
The rover has two other kinds of camera, not mentioned in the reading text. One is the HandCam (hand camera). This is at the end of the robot arm. It can look at small objects on the ground. And there are HazCams (hazard cameras). These are on the front and sides of the rover. They look out for hazards and stop the rover from crashing into them.
The MSL will probably be powered by nuclear energy. If so, the rover would carry a radioisotope power supply (labelled as the generator on the diagram on page $90)$ that would generate electricity from the heat of plutonium's radioactive decay. NASA is considering also using solar power as a back-up power source.

An object's mass (measured in grams, kilograms, tonnes, etc.) is an absolute measure which is not affected by the gravity of a specific planet. An object's weight (also measured in grams, kilograms etc.) is a relative measure, which changes if the force of gravity changes.
In the task exercise on page 93, the rover on Mars takes ten minutes to respond to its controller on Earth. This is because a radio wave takes about ten minutes to travel the distance from Earth to Mars.

3 Progress

A spacewalk (also called extra-vehicular activity or EVA) is work done by an astronaut (or Russian cosmonaut) away from the Earth and outside their spacecraft. EVAs may be tethered (where the astronaut is connected to the spacecraft by a cable, oxygen can be supplied through a tube, and no propulsion is needed to return to the spacecraft) or untethered. If an EVA is untethered, the astronaut must have a method of propulsion to allow them to return to the spacecraft.

NASA information on MSL: http://mars.jpl.nasa.gov/ $\mathrm{msl} /$ mission/sc_rover.html
Factsheet on MSL; http;//marsweb.jpl.nasa.gov/ newsroom/factsheets/mars-science-laboratory.pdf
More information on the MSL: http://en.wikipedia. org/wiki/Mars_Science_Laboratory
Extra-vehicular activity (spacewalks): http://
en.wikipedia.org/wiki/Spacewalk

Teacher's notes

1 Data

Start here

1 Ask students to look at the picture and describe what they can see and what's happening. (The picture shows the Mars rover exploring the surface of Mars.)
Elicit some vocabulary from the picture, e.g. robot, laser beam, rocks, soil. Then ask students to look at the diagram of the Mars rover in 2 and ask them to think about what the different parts of the robot do, for example the ChemCam, the MastCam and the robot arms, and what jobs the rover does on Mars. Pre-teach some vocabulary to do with space exploration: photograph, dig, analyse, rock/soil samples, powder, explore the surface of Mars.
Put students in pairs. Tell them that they are TV reporters. They then prepare questions about the Mars rover with their partner. Elicit the first question from students to get them started.

Reading

2 Ask students to look at the diagram of the Mars rover and its labelled parts. Tell them to read the text quickly and to tick the questions in their list from 1 that the text answers. Remind them to look at the notes in the margin to help them with vocabulary.

Extra activity

Write the following parts of the Mars rover on the board and elicit from students what their function is:
1 The tools at the end of the Mars rover (Some break pieces of rock, others dig and collect samples of soil.)
2 The mast (It supports two special cameras.)
3 The MastCam (It looks all around the rover.)
4 The ChemCam (It has a laser gun. The gun fires a laser beam at rocks.)
5 The suspension system (It allows the six wheels of the rover to remain on the ground at all times, and for the rover to go over big rocks.)
6 The motor in each of the wheels (They allow the vehicle to rotate at 360 degrees.)

3 Ask students to look at the specification chart and the information that they need to find about the Mars rover. Then ask them to look back at the text in 2 and quickly find the answers to complete the chart. They can compare their answers with a partner before you check with the class.

```
1 2.1 m
2 2.2 m
3 800 kg
4.60 kg
5 six
6 25 cm in diameter
760 degrees
8 75 cm
9 90 metres per hour
1 0 3 0 \text { metres per hour}
11 85 ' C max. -120 ' C min.
12 200 m
```


Vocabulary

Ask students to look at the symbols to express approximation. You could then ask students to look back at the text in 2 and underline sentences that include these expressions in the text.
4 First revise the adjectives for height, weight and length. Then tell students to complete the sentences with the information in brackets.

1 is about/approximately 2.1 m high and about/ approximately 2.2 m long.
2 weighs more than/over 750 kg .
3 are at least 60 kg .
4 rotate at up to 360°.
5 can travel more than/over 100 metres per day and operate up to about/approximately 687 days.

Speaking

5 Students write the questions about the Mars rover. Tell them to find the answer to the questions in the text on page 90 first. This will help them to write the question for it.

[^4]6 Put students in pairs to take turns in asking and answering the questions in 5 about the Mars rover.
7 Students practise checking facts by guessing the answers to a quiz about the planet Mars.
Put students in pairs. Student A reads the questions and guesses the answers to the quiz. Student B turns to page 113 where they will find the correct answers to these facts.
Student A then reads out the facts and asks for confirmation by saying Is that right? Student B confirms whether their answers are correct by saying Yes, that's right/correct. or No, that's wrong. Change it to

1b 2a 3a 4 b

2 Instructions

Start here

Revision

Revise directions: move forwards/backwards, rotate, turn left/right, turn round, stop. You could ask students to stand up and follow your instructions, but only when you say the word Please in the instruction.

1 Ask students to look at the picture of the Mars rover and the route it's travelling. Tell them to imagine that they are the controller of the Mars rover and to write down a list of instructions to give the rover so that it can move along the same route as the one shown in the picture. You could elicit the first instruction from the class: Move forwards 200 cm and write it up on the board.
2 258
Play the recording for students to complete the dialogue between the controller and the Mars rover. Explain that confirmed means you're following the controller's instructions. Ask them: What tense is used to confirm your actions and why? (The present continuous. You use it to talk about something that is happening now.)

$$
1 \text { moving } 2 \text { rotating }
$$

658

[$\mathrm{C}=$ Controller; $\mathrm{R}=$ Rover]
C: Move forwards 200 cm .
R: Confirmed. I'm moving forwards 200 cm .
C: Now rotate 15 degrees to the left.
R: Confirmed. I'm rotating 15 degrees to the left.
3 Tell students to imagine that they are the Mars rover. Ask them to look at instruction number 1 and the illustration of the rover's movement for that instruction in the picture at the top of the page. Then ask them to look at the confirmation that the rover gives for the instruction. Students complete the rest of the table, confirming their actions. Remind them that when giving instructions you use the imperative and for confirming actions you use the present continuous tense.

1 I m moving forwards 200 cm .
2 I 'm rotating 15 degrees to the left.
3 I 'm reversing 300 cm .
4 I'm rotating 80 degrees to the right.
5 l 'm going up the hill.
6 I'm rolling down the hill.
7 I m going round to the left of the rocks.
8 I'm stopping.

Listening

Tell students that they're going to listen to a trainer teaching a student how you control the Mars rover. Play the recording for students to complete the dialogue. You could then ask them to practise the conversation in pairs with the students taking the part of the Mars rover doing the actions.

1 make 2 move forwards 3 pushing 4 happening 5 isn't 6 moving

B. 59

[$\mathrm{T}=$ Trainer; $\mathrm{Tr}=$ Trainee]
T: Right. I'll give you an instruction. First, do it. Then confirm what you're doing, OK?
Tr: OK.
T : Then confirm what the rover's doing. Is that clear?
Tr: Yes.
T: Right. Let's go. First, make the rover move forwards 200 cm .
Tr: OK. I'm pushing the joystick forwards.
T: Good. Now what's happening?
Tr: The rover isn't moving.
T: Right. Wait five seconds. Now what's happening?
Tr: OK. It's moving forwards now.

Task

5 Put students in pairs to discuss the questions.
There is a time delay because of the speed of sound. The reduced response is caused by the time it takes for a radio signal to travel through space. The delay in sending commands to Mars is about ten minutes.

Speaking

6 Explain that students are going to write some instructions for the Mars rover in the simulation on Earth, and the confirmation of the actions. Tell them that they'll need to use the information in 3 and the notes below the table in 6 . Go through the example with students first. You could ask one student to read out the instruction given by the controller, and then another student reads out the confirmation of what the rover is doing. Make sure that they know what to do. Then tell them to complete the rest of the table.

1 Make the rover move forwards 200 cm . / OK. I'm pushing the joystick forwards. / The rover isn't moving. / Now it's moving forwards.
2 Rotate 15 degrees to the left. / OK. I'm turning the wheel to the left. / The rover isn't turning left. / Now it's turning left.
3 Reverse for 300 cm . / OK. I'm pulling the joystick backwards. / The rover isn't reversing. / Now it's reversing.
4 Rotate 80 degrees to the right. / OK. I'm pressing the 'rotate' button. / The rover isn't rotating. / Now it's rotating.

7 Put students in pairs. Ask them to cover the table in 6. Tell them to practise the dialogues, using the notes in the table in 3 . Ask them to take turns to be the controller and the rover.
8 Tell students to close their books. Tell them that they have ten seconds to look at eight pictures. Explain that they have to remember what each object is, and also to remember what directions the objects are moving in.
Ask students to open their books and look at the pictures for 10 seconds. Then tell them to turn to page 113 and follow the instructions.

1 The astronaut is moving downwards.
2 The plane is going forwards.
3 The car is turning left.
4 The helicopter is moving upwards.
5 The rover is rotating right.
6 The truck is reversing right round the corner.
7 The shuttle is moving upwards.
8 The motorboat is turning right.

3 Progress

Start here

1060
Ask students to look at the photo. Ask them what they think the astronaut is doing. (He's repairing some damage on a space station.) Then tell them that they're going to listen to an astronaut talking about his work on the international space station.
Play the recording once through for students to listen. Then play it again for them to complete the list of tasks in the speech bubble with the verbs in the box.
You could then play it one more time for them to check their answers.

1 Test 2 Inspect $\mathbf{3}$ Take 4 Disconnect 5 Remove 6 Bring 7 Dismantle 8 Repair 9 replace 10 Assemble 11 Attach 12 Connect

C. 60

We sometimes have to make many spacewalks outside the space station, just to do one simple repair job. Let me give you an example. A small piece of rock from space has hit an oxygen tank. What do we do?
First, we must test our equipment for the spacewalks. Then, in the first spacewalk, we inspect the damage. We take photographs of the tank and the hole.
After that, we go back into the space station.
There we plan the repair and prepare for the next spacewalk. In the second spacewalk, we disconnect the pipes from the tank - these pipes carry the oxygen into the space station. We remove the tank. Then we bring the tank into the space station. Back in the space station, we dismantle the tank. We repair the damage. If this isn't possible, we replace the part.
Then we assemble the tank again.
In the third spacewalk, we attach the tank to the side of the space station and connect the pipes to the tank.

Vocabulary

2 Ask students to look back at 1 and find and underline the opposite of the words listed.
disconnect; dismantle; repair; replace

Listening

3 61

Tell students that they're going to listen to a controller speaking from the control centre who is talking to the astronaut about the repair work he's being doing on the space station.
Ask students to look at the chart in the margin. Point out that today is the 6th of June. Ask them to read the tasks in the chart that the astronaut has been asked to do. Then ask students: Has the astronaut done the tasks? Play the recording for students to check their answer and to complete the dialogue.

2.61

1 done 2 did 3 did 4 repaired 5 repaired 6 repairing 7 will
[C = Controller; A = Astronaut]
C. OK, today is the 6th of June, 7 pm in the evening. I'm checking progress on the space station. Have you done the first spacewalk yet?
A: Yes, we have.
C: Good. When did you do it?
A: We did the spacewalk yesterday, on the 5th of June,
C: Right. And have you repaired the oxygen tank yet?
A: No, we haven't repaired it yet. We're still repairing it.
C: When will you finish it?
A: We'll complete the job tomorrow morning.

Language

Present perfect with yet

Remind students of the work they did on the Present perfect to talk about recent events in Unit 8. Then go through the Language box with students. Explain that you use yet in questions and negatives in the present perfect to talk about events that are happening up to now, and that it comes at the end of the question. Point out the short answer No, not yet.
Remind students that you don't use times, dates or time expressions with the present perfect tense. Ask them what tense you can use these with. (Past simple.)
Tell students that they'll find more information about the present perfect in the Grammar summary on page 102 of the Course Book.

Speaking

4 Put students in pairs. Ask them to look at the chart and to find the date for today. Then ask them to make similar dialogues to the one in 3 , using the information from the chart. Tell them to take turns to be the controller and the astronaut. Go round the class, checking that students are using the present perfect and past simple correctly. Make notes of any mistakes and go through them with the class after they've finished the activity.

Task

5 Put students in pairs. Ask Student A to turn to page 117.
Ask students to read the instructions and look at the example. Student B asks Student A questions to check that they've done the tasks listed and Student A replies, using the information from their chart on page 117. Ask students to look at the example dialogue first and make sure that they know what to do.

Students then go through the checklist. Student B makes notes on when the task was completed or when it will be completed. After they've completed the task, Student B can check with Student A that they have the correct information.

Task	Y/N?	Notes
Dismantle old water system	Y	Completed 4th August
Assemble new water system	Y	Completed 6th August
Install water system	Y	Completed 8th August
Test equipment for third spacewalk	Y	Completed 5th August
Take video of damaged nose cap	Y	Completed 6th August
Inspect damage to waste tank	N	Will complete 9th August
Assemble new robot arm	N	Will complete 11th August
Attach new robot arm	N	Will complete 13th August

Review Unit F

Answer key

1

$\mathbf{1}$ makes	$\mathbf{4}$ allows
$\mathbf{2}$ lets	$\mathbf{5}$ stops/prevents
$\mathbf{3}$ prevents/stops	$\mathbf{6}$ causes

21 press; makes; go
2 push; causes; stop
3 pull; prevents; moving
4 release; allows; move

31 rise
2 close; to open
3 from flowing
4 to flow
5 to go down
6 open; to close

4 increase \neq decrease
expand \neq contract
bring \neq take
low \neq high
assemble \neq dismantle
inlet \neq outlet
less than \neq more than
connect \neq disconnect
remove \neq replace
approximately \neq exactly
$5 \quad \mathbf{1}$ closes
$\mathbf{6}$ opens
$\mathbf{2}$ flows
$\mathbf{7}$ moves
$\mathbf{3}$ makes
$\mathbf{8}$ closes
$\mathbf{4}$ pulls
$\mathbf{9}$ strikes

7 Sample answer:
A hand pump has (consists of) a handle, a nozzle, a spring, a chamber and two ball valves. The nozzle is at the end of the handle (or goes through the handle). The handle is attached to the spring. The spring is in the chamber. There is an outlet at the top of the chamber, and an inlet valve at the bottom of the chamber. The top ball valve is on the outlet, and the bottom ball valve is on the inlet. The bottom ball valve is attached to the spring.
When you press the handle down into the chamber, the spring pushes the bottom ball valve down into the inlet and closes it. The pressure in the chamber increases. This makes the top ball valve move up from the outlet, and the outlet opens. The high pressure forces (pushes) the fluid out through the nozzle (or makes the fluid flow out through the nozzle).
When you release the handle, the spring makes the handle rise again. The pressure in the chamber decreases. The spring makes the bottom ball valve move up from the inlet. This opens the inlet, and allows fresh fluid to flow into the chamber.

81 replaced; replace; replaced
2 taken; take; took
3 driven; drive; drove
4 spoken; speak; spoke

11 Sample answer:

The function of the dam is to generate electricity. The main parts of the dam are the powerhouse, the generator, the shaft, the tunnel and the inlet.
The dam is 111 metres high, 3600 metres long and 980 metres wide at the base. $11,000 \mathrm{~m}^{3}$ of water can pass through the dam. The reservoir is $132 \mathrm{~km}^{3}$.
The dam is made of reinforced concrete.
The gates open and this allows the water to flow in through the inlet. The water from the reservoir flows through the filter, through the gate and along the tunnel. The water then flows into the blades of the turbine. The blades move the shaft and the shaft turns the generator. The generator makes electricity. The electricity runs through high-voltage cables. The water then flows out.

Project

12 Students can do their research on the Internet or in a library, and in their own language if they wish. They must then write their results in English.

Quick test answer key

Part 1: Vocabulary and grammar

11 nose cap 2 joystick 3 degrees 4 pressure 5 brake

21 e 2 d 3 a 4 b 5 c

31 connect 2 assemble 3 repaired 4 replace

41 allows 2 makes 3 prevents 4 lets 5 stops 6 causes

5 1 Turn
2 'm turning
3 Look
4 'm looking
5 Release

6 press
7 'm releasing
8 'm pressing
9 's happening
10 is moving

61 Have you repaired 4 When did you order 2 I'm checking 5 He replaced 3 I haven't bought

71 He'll finishes the work tomorrow morning.
He'll finish the work tomorrow morning.
2 Bid the astronauts dismantle the oxygen tank yet? Have the astronauts dismantled the oxygen tank yet?
3 Is the car move forwards now? Is the car moving forwards now?
4 I haven't yet finished repairing the equipment. I haven't finished repairing the equipment yet.
5 A: When you eompleted the job? A: When did you complete the job?

Part 2: Reading and writing

Reading

1 It can change from a helicopter to a plane.
2 It operates the tilting mechanism.
3 With the rotors in the vertical position, they rotate in opposite directions and the aircraft lifts off.
4 The blades and the wings of the aircraft can fold up.
5 As military planes, search and rescue and emergency medical services.

Writing

```
Subject: Progress check on car
Dear Mr ...
With reference to your car, I've checked
the tyre pressure and I've tested the
brakes. I haven't checked the oil yet. I'll
check it tomorrow. I haven't repaired the
right wing mirror yet. I'll repair it this
afternoon, and I haven't installed the
satellite navigation system. I'm waiting
for delivery of the system. I'll install it
tomorrow.
```


Part 1: Vocabulary and grammar

1 Underline the odd word out in each group.
1 blade, gear, hub, nose cap, shaft
2 forwards, joystick, rotate, reverse, turn
3 degrees, height, speed, distance, mass
4 pressure, spring, trigger, tube, valve
5 battery, brake, circuit, magnet, terminal
(5 marks)
2 Match the words of approximation with their symbols.

1 at least
a) $>$

2 about/approximately
b) \leq

3 more than/over
c) <

4 up to
d) -

5 less than/under
e) \geq
(5 marks)
3 The words in italics are incorrect. Write the correct word.
1 If you want to use the mouse, disconnect the keyboard to the mouse cable.
2 Follow the instructions carefully in the manual to dismantle your new computer table.
3 You can use the computer now. The technician has damaged it.
4 If there is no display on the screen, you may need to remove the batteries with new ones.
(4 marks)
4 Choose the correct word to complete the sentences.
1 The suspension system allows/lets the vehicle to go over rocks.
2 The current causes/makes the electro-magnet switch on.
3 The closed valve allows/prevents the water from flowing out.
4 This button lets/stops you rotate the rover 360 degrees.
5 The controller makes/stops the wind from damaging the filter.
6 The piston causes/lets the water pressure to increase or decrease.
(6 marks)

5 Complete the sentences with the words in the box in the correct tense.
happen look move press release turn
A: (1) \qquad the key.
B: Right. I (2) \qquad the key.
A: OK. Is the engine on?
B: Yes, it is.
A: OK. (3) \qquad in the mirror. Check there is no traffic. Is that clear?
B: Yes. I (4) \qquad in the mirror. There isn't any traffic.
A: Right. (5) \qquad the handbrake and (6) \qquad your foot down on the accelerator.
B: OK. I (7) \qquad the handbrake and I (8) \qquad the accelerator.
A: What (9) \qquad
B: The car (10) \qquad -

6 Complete the sentences with the words in brackets in the past simple or present perfect.
1 the car yet? (you / repair)
2 \qquad the lights now. (I/ check)
3
(I / not buy)
4
5 \qquad the parts? (when / you / order) ago. (He / replace) the battery in the car one month (5 marks)

7 Cross-out the mistake. Then write the correct sentence.
1 He'll finishes the work tomorrow morning.

2 Did the astronauts dismantle the oxygen tank yet?
3 Is the car move forwards now?

4 I haven't yet finished repairing the equipment.
5 A: When you completed the job? B: Yesterday.

Part 2: Reading and writing

Reading

How a tiltrotor aircraft works

A tiltrotor aircraft can fly like a plane, but it can also take off and land vertically and hover like a helicopter. The aircraft has two large rotors with three-bladed propellers. A turboshaft engine drives the propellers. Some of the power from the engines also drives a mid-wing gear box. This gear box operates a tilting mechanism which allows the aircraft to change from a helicopter into a plane. With the rotors in the vertical position, they rotate in opposite directions and cause the aircraft to lift off the ground. As the plane speeds up, the rotors of the propellers slowly tilt forward, and the helicopter changes into a plane.
The blades and the wings of the aircraft can fold up so that they can easily land on ships or be stored in aircraft carriers. They are used as military planes but also for search and rescue and emergency medical services.

Read the text. Then answer the questions below.
1 What can a tiltrotor aircraft do?

2 What does the gear box do?
\qquad
3 How does the aircraft take off?

4 Why is it easy to land on ships?
\qquad

5 What can you use the tilt aircraft for?
\qquad
\qquad

Writing

Read the checklist. Then write an email to the customer giving details about the work you've done, and when you'll complete the work you haven't done.

Task		Notes
Check oil	x	Tomorrow
Check tyre pressure	\checkmark	
Test brakes	\checkmark	
Repair right wing mirror	x	This afternoon
Install satellite navigation system	x	Tomorrow. - Waiting for delivery of system

```
Subject: Progress check on car
Dear Mr ...
With reference to your car, ..
```


Word list

Unit 1

adapter (noun) 1 Basics exercise 8 amp (noun) 2 Letters and numbers exercise 9 antenna (noun) 1 Basics exercise 8 bolt (noun) 1 Basics exercise 8 cable (noun) 1 Basics exercise 8 Celsius (noun) 2 Letters and numbers exercise 9 chisel (noun) 1 Basics exercise 8 closed (adverb) 1 Basics exercise 7 counter (noun) 2 Letters and numbers exercise 7 degree (noun) 2 Letters and numbers exercise 9 down (adverb) 1 Basics exercise 7 eighth (number) 3 Dates and times exercise 2 eleventh (number) 3 Dates and times exercise 2 euro (noun) 2 Letters and numbers exercise 9 Excuse me. (phrase) 1 Basics exercise 1 fifth (number) 3 Dates and times exercise 1 first (number) 3 Dates and times exercise 1 flight (noun) 3 Dates and times exercise 6 foot (noun) 2 Letters and numbers exercise 9 fourth (number) 3 Dates and times exercise 1 gallon (noun) 2 Letters and numbers exercise 9 Good to meet you. (phrase) 1 Basics exercise 1 gram (noun) 2 Letters and numbers exercise 9 Hello. (phrase) 1 Basics exercise 1 in (adverb) 1 Basics exercise 7 inch (noun) 2 Letters and numbers exercise 9 kilogram (noun) 2 Letters and numbers exercise 9 kilometre (noun) 2 Letters and numbers exercise 9 kilometres per hour (noun) 2 Letters and numbers exercise 9
kilowatt (noun) 2 Letters and numbers exercise 9
left (adverb) 1 Basics exercise 7
listen (verb) 1 Basics exercise 6 litre (noun) 2 Letters and numbers exercise 9 lower (verb) 1 Basics exercise 6 metre (noun) 2 Letters and numbers exercise 9 model (noun) 2 Letters and numbers exercise 2 negative (adjective) 2 Letters and numbers exercise 9 Nice to meet you. (phrase) 1 Basics exercise 1 ninth (number) 3 Dates and times exercise 2 nut (noun) 1 Basics exercise 8
off (adverb) 1 Basics exercise 7

open (adverb) 1 Basics exercise 7 out (adverb) 1 Basics exercise 7 pick up (phrasal verb) 1 Basics exercise 6 platform (noun: place in train station where you get on and off a train) 2 Letters and numbers exercise 7		
Pleased to meet you. (phrase) 1 Basics exercise 1 plug (noun) 1 Basics exercise 8		
positive (adjective) 2 Letters and numbers exercise 9		
pound (noun) 2 Letters and numbers exercise 9		
put down (phrasal verb) 1 Basics exercise 6 raise (verb) 1 Basics exercise 6		
read (verb) 1 Basics exercise 6 revolutions per minute (noun) 2 Letters and numbers exercise 9		
right (adverb) 1 Basics exercise 7		
saw (noun: tool) 1 Basics exercise 8		
say (verb) 1 Basics exercise 6		
screw (noun) 1 Basics exercise 8		
screwdriver (noun) 1 Basics exercise 8		
second (number) 3 Dates and times exercise 1		
seventh (number) 3 Dates and times exercise 2		
sit (verb) 1 Basics exercise 6		
sixth (number) 3 Dates and times exercise 1		
spanner (noun) 1 Basics exercise 8		
stand (verb) 1 Basics exercise 6		
start (verb) 1 Basics exercise 6		
stop (verb) 1 Basics exercise 6		
surname (noun) 2 Letters and numbers exercise 2		
tenth (number) 3 Dates and times exercise 2		
third (number) 3 Dates and times exercise 1		
thirteenth (number) 3 Dates and times exercise 2		
thirtieth (number) 3 Dates and times exercise 2		
twelfth (number) 3 Dates and times exercise 2		
twentieth (number) 3 Dates and times exercise 2 under (preposition) 1 Basics exercise 7		
up (adverb) 1 Basics exercise 7		
volt (noun) 2 Letters and numbers exercise 9 washer (noun) 1 Basics exercise 8		
watt (noun) 2 Letters and numbers exercise 9		

on (adverb) 1 Basics exercise 7 open (adverb) 1 Basics exercise 7 out (adverb) 1 Basics exercise 7 pick up (phrasal verb) 1 Basics exercise 6 platform (noun: place in train station where you get on and off a train) 2 Letters and numbers exercise 7
Pleased to meet you. (phrase) 1 Basics exercise 1 plug (noun) 1 Basics exercise 8 positive (adjective) 2 Letters and numbers exercise 9 pound (noun) 2 Letters and numbers exercise 9 put down (phrasal verb) 1 Basics exercise 6 raise (verb) 1 Basics exercise 6 read (verb) 1 Basics exercise 6 revolutions per minute (noun) 2 Letters and numbers exercise 9
right (adverb) 1 Basics exercise 7
saw (noun: tool) 1 Basics exercise 8
say (verb) 1 Basics exercise 6
screw (noun) 1 Basics exercise 8 screwdriver (noun) 1 Basics exercise 8 second (number) 3 Dates and times exercise 1 seventh (number) 3 Dates and times exercise 2 sit (verb) 1 Basics exercise 6 sixth (number) 3 Dates and times exercise 1 spanner (noun) 1 Basics exercise 8 stand (verb) 1 Basics exercise 6
start (verb) 1 Basics exercise 6
stop (verb) 1 Basics exercise 6
surname (noun) 2 Letters and numbers exercise 2 tenth (number) 3 Dates and times exercise 2 third (number) 3 Dates and times exercise 1 thirteenth (number) 3 Dates and times exercise 2 thirtieth (number) 3 Dates and times exercise 2 twelfth (number) 3 Dates and times exercise 2 twentieth (number) 3 Dates and times exercise 2 under (preposition) 1 Basics exercise 7 up (adverb) 1 Basics exercise 7 volt (noun) 2 Letters and numbers exercise 9 washer (noun) 1 Basics exercise 8 watt (noun) 2 Letters and numbers exercise 9 write (verb) 1 Basics exercise 7

Unit 2

assemble (verb) 2 Assembling exercise 1
axle (noun) 1 Naming exercise 2
bike (noun) 1 Naming exercise 11
black (adjective) 3 Ordering exercise 5
blue (adjective) 3 Ordering exercise 5
boat (noun) 1 Naming exercise 11 brown (adjective) 3 Ordering exercise 5
bolt (noun) 1 Naming exercise 7
car (noun) 1 Naming exercise 11
deck (noun: main part of a skateboard) 1 Naming exercise 2
distance (noun) 1 Naming exercise 1 green (adjective) 3 Ordering exercise 5 hammer (noun) 2 Assembling exercise 8
helmet (noun) 3 Ordering exercise 5 high (adjective) 1 Naming exercise 1 jump (noun) 1 Naming exercise 1 large (adjective) 3 Ordering exercise 5 lever (noun) 2 Assembling exercise 8 long (adjective) 1 Naming exercise 1 loosen (verb) 2 Assembling exercise 7 medium (adjective) 3 Ordering exercise 5 motorbike 1 Naming exercise 6 (noun) nail (noun) 1 Naming exercise 7 nose (noun) 1 Naming exercise 2 nut (noun) 1 Naming exercise 7

pad (noun) 3 Ordering exercise 5
plane (noun) 1 Naming exercise 11
plate (noun) 1 Naming exercise 2
pull (verb) 2 Assembling exercise 7
push (verb) 2 Assembling exercise 7
put (verb) 2 Assembling exercise 5
quantity (noun) 2 Assembling exercise 2
red (adjective) 3 Ordering exercise 5
rocket (noun) 1 Naming exercise 11
screw (noun) 1 Naming exercise 6 screwdriver (noun) 1 Naming exercise 7
skateboard (noun) 1 Naming exercise 1
size (noun) 2 Assembling exercise 2
small (adjective) 3 Ordering exercise 5
spanner (noun) 1 Naming exercise 7
staple (noun) 1 Naming exercise 7
tail (noun) 1 Naming exercise 2
take (verb) 2 Assembling exercise 7
tighten (verb) 2 Assembling exercise 7
truck (noun: part of a skateboard) 1 Naming exercise 2
washer (noun) 1 Naming exercise 7
wheel (noun) 1 Naming exercise 2
white (adjective) 3 Ordering exercise 5
yellow (adjective) 3 Ordering exercise 5

above (preposition) 3 Locations exercise 4 alarm (noun) 2 Functions exercise 2 amplifier (noun) 3 Locations exercise 8 at the bottom (phrase) 3 Locations exercise 1 at the top (phrase) 3 Locations exercise 1 battery (noun) 2 Functions exercise 1 below (preposition) 3 Locations exercise 4 blade (noun: flat sharp-edged part of a knife) 1 Tools exercise 1
bottle opener (noun) 1 Tools exercise 3 building site (noun) 1 Tools exercise 1 can opener (noun) 1 Tools exercise 1 change (verb) 2 Functions exercise 4 charge (verb) 2 Functions exercise 4 clock (noun) 2 Functions exercise 2 close button (noun) 3 Locations exercise 1 compass (noun) 2 Functions exercise 2 computer (noun) 3 Locations exercise 3 computer station (noun) 3 Locations exercise 3 connect (verb) 2 Functions exercise 4 cover (noun) 1 Tools exercise 8 cursor (noun) 3 Locations exercise 1 cut (verb) 2 Functions exercise 9 drive in (verb) 2 Functions exercise 9 DVD drive (noun) 3 Locations exercise 3 dynamo (noun) 2 Functions exercise 1 electricity supply (noun) 2 Functions exercise 4 external (adjective) 2 Functions exercise 4 find (verb) 2 Functions exercise 6 generator (noun) 2 Functions exercise 4 grip (verb) 2 Functions exercise 9 handle (noun) 1 Tools exercise 9 head (noun) 1 Tools exercise 9 headphones (noun) 3 Locations exercise 8 in the centre (phrase) 3 Locations exercise 2 in the middle (phrase) 3 Locations exercise 2 internal (adjective) 2 Functions exercise 4 jaws (noun) 1 Tools exercise 9 key tool (noun) 1 Tools exercise 11
keyboard (noun) 3 Locations exercise 3 laptop computer (noun) 3 Locations exercise 8 mains electricity (noun) 2 Functions exercise 1 measure (verb) 2 Functions exercise 6 metal (noun) 2 Functions exercise 10 mouse (noun) 3 Locations exercise 3 mouse pad (noun) 3 Locations exercise 8 Multi Tool (noun) 1 Tools exercise 1 on the left (phrase) 3 Locations exercise 1 on the right (phrase) 3 Locations exercise 1 pick (noun) 1 Tools exercise 6 plastic (adjective) 1 Tools exercise 7 pliers (noun) 1 Tools exercise 1 printer (noun) 3 Locations exercise 3 produce (verb) 2 Functions exercise 4 radio (noun) 2 Functions exercise 2 receive (verb) 2 Functions exercise 6 ruler (noun) 1 Tools exercise 6 scanner (noun) 3 Locations exercise 3 scissors (noun) 1 Tools exercise 3 screen (noun) 3 Locations exercise 3 shaft (noun) 1 Tools exercise 9
shine (verb: directs a light at something) 2 Functions exercise 6
solar panel (noun) 2 Functions exercise 5 solar power (noun) 2 Functions exercise 1 speaker (noun) 3 Locations exercise 3 start button (noun) 3 Locations exercise 1 string (noun) 2 Functions exercise 10 Survival Tool (noun) 1 Tools exercise 7 thermometer (noun) 2 Functions exercise 2 to the left of (phrase) 3 Locations exercise 4 to the right of (phrase) 3 Locations exercise 4 torch (noun) 2 Functions exercise 2 turn (verb) 2 Functions exercise 4 use (verb) 1 Tools exercise 1 wire (noun) 2 Functions exercise 10 wrench (noun) 1 Tools exercise 7

Unit 4

about (adverb) 1 Directions exercise 7 accelerate (verb) 2 Instructions exercise 6 accelerator (noun) 3 Actions exercise 2 angle (noun) 1 Directions exercise 7 antenna (noun) 2 Instructions exercise 4 arm (noun) 1 Directions exercise 6 ascend (verb) 2 Instructions exercise 6 backwards (adverb) 1 Directions exercise 1 brake (noun) 3 Actions exercise 2 control (verb) 2 Instructions exercise 6 descend (verb) 2 Instructions exercise 6 diagonally (adverb) 1 Directions exercise 2 direction (noun) 1 Directions exercise 6 do a U-turn (phrase) 3 Actions exercise 4 dock (verb) 3 Actions exercise 5 down (adverb) 1 Directions exercise 1 elbow (noun) 1 Directions exercise 6 forearm (noun) 1 Directions exercise 7 fork (noun: part at the front of a forklift truck for moving heavy objects) 3 Actions exercise 2
forklift truck (noun) 3 Actions exercise 2 forwards (adverb) 1 Directions exercise 1 handle (noun) 2 Instructions exercise 4 helicopter (noun) 1 Directions exercise 2 horizontal axis (phrase) 1 Directions exercise 3 joystick (noun) 2 Instructions exercise 4 kilometre (noun) 2 Instructions exercise 1 lever (noun) 3 Actions exercise 1 metre (noun) 2 Instructions exercise 1 mile (noun) 2 Instructions exercise 1 move (verb) 1 Directions exercise 6 movement (noun) 1 Directions exercise 1 park (verb) 3 Actions exercise 5
parking brake (noun) 3 Actions exercise 2 pedal (noun) 3 Actions exercise 1 pivot (noun) 1 Directions exercise 7 plane (noun) 1 Directions exercise 2 press (verb) 3 Actions exercise 6 pull (verb) 2 Instructions exercise 5 push (verb) 2 Instructions exercise 5 reverse (verb) 3 Actions exercise 2 revolution (noun) 2 Instructions exercise 1 robot arm (noun) 1 Directions exercise 10 rocket (noun) 1 Directions exercise 5 roll (noun) 2 Instructions exercise 6 rotate (verb) 1 Directions exercise 3 rotation (noun) 2 Instructions exercise 1 shoulder (noun) 1 Directions exercise 6 sideways (adverb) 1 Directions exercise 1 slide (verb) 2 Instructions exercise 6 slider (noun) 2 Instructions exercise 4 slow down (verb) 2 Instructions exercise 6 speed (noun) 2 Instructions exercise 1 steering wheel (noun) 3 Actions exercise 1 straight (adverb) 1 Directions exercise 2 switch (noun) 2 Instructions exercise 4 tilt (noun) 2 Instructions exercise 6 to the left (adverb) 2 Instructions exercise 5 to the right (adverb) 2 Instructions exercise 5 truck (noun: vehicle) 3 Actions exercise 2 turn round (verb) 3 Actions exercise 4 up (adverb) 1 Directions exercise 1 vertical axis (phrase) 1 Directions exercise 3 vertically (adverb) 1 Directions exercise 2 wrist (noun) 1 Directions exercise 6
amp (noun) 2 Electrical circuit exercise 3 ampere (noun) 2 Electrical circuit exercise 3 around (preposition of movement) 1 Heating system exercise 5
battery (noun) 2 Electrical circuit exercise 1 blow (verb) 3 Cooling system exercise 6 cable (noun) 2 Electrical circuit exercise 1 chimney (noun) 3 Cooling system exercise 7 cold (adjective) 1 Heating system exercise 4 conductor (noun) 2 Electrical circuit exercise 1 connect (verb) 3 Cooling system exercise 6 control (verb) 2 Electrical circuit exercise 5 controller (noun: a device that controls something) 2 Electrical circuit exercise 2
convert (verb) 2 Electrical circuit exercise 5 cool (verb) 1 Heating system exercise 7 DC (noun = direct current) 2 Electrical circuit exercise 3 drive (verb: supply the power to make something work) 3 Cooling system exercise 3
electrical circuit (noun) 2 Electrical circuit exercise 1 electrical current (noun) 2 Electrical circuit exercise 3 empty (adjective) 2 Electrical circuit exercise 5 energy (noun) 2 Electrical circuit exercise 5 engine (noun) 3 Cooling system exercise 1 enter (verb) 1 Heating system exercise 1 fan (noun) 3 Cooling system exercise 3 flow (verb) 1 Heating system exercise 1 freezer (noun) 3 Cooling system exercise 1 from (preposition of movement) 1 Heating system exercise 1
full (adjective) 2 Electrical circuit exercise 5 fuse (noun) 2 Electrical circuit exercise 1 go (verb) 1 Heating system exercise 6 heat (verb) 1 Heating system exercise 1 hole (noun) 3 Cooling system exercise 8 hose (noun) 3 Cooling system exercise 3 inlet (noun) 1 Heating system exercise 1
into (preposition of movement) 1 Heating system exercise 1
lamp (noun) 2 Electrical circuit exercise 1 leave (verb) 1 Heating system exercise 1 move (verb) 1 Heating system exercise 5 out of (preposition of movement) 1 Heating system exercise 4
pass (verb-move through) 3 Cooling system exercise 3
pipe (noun) 3 Cooling system exercise 8
push (verb) 3 Cooling system exercise 6 radiator (noun) 3 Cooling system exercise 3 refrigerator (noun) 3 Cooling system exercise 1 rise (verb) 1 Heating system exercise 1 shine (verb: gives out light) 2 Electrical circuit exercise 4 short-circuit (verb) 2 Electrical circuit exercise 7 shower head (noun) 1 Heating system exercise 1 sink (verb) 1 Heating system exercise 1 solar panel (noun) 2 Electrical circuit exercise 2 solar water panel (noun) 1 Heating system exercise 1 store (verb) 2 Electrical circuit exercise 5 switch (noun) 2 Electrical circuit exercise 1 system (noun) 1 Heating system exercise 1 temperature (noun) 3 Cooling system exercise 1 terminal (noun) 2 Electrical circuit exercise 1 thermostat (noun) 3 Cooling system exercise 3 through (preposition of movement) 1 Heating system exercise 1
to (preposition of movement) 1 Heating system exercise 1 tower (noun) 3 Cooling system exercise 7 valve (noun) 1 Heating system exercise 1 warm (adjective) 1 Heating system exercise 4 water pipe (noun) 1 Heating system exercise 1 water pump (noun) 3 Cooling system exercise 3 water tank (noun) 1 Heating system exercise 1 watt (noun) 2 Electrical circuit exercise 4 volt (noun) 2 Electrical circuit exercise 4
alloy (noun) 2 Properties exercise 9 aluminium (noun) 2 Properties exercise 2 backpack (noun) 3 Buying exercise 6 bend (verb) 1 Materials testing exercise 4 break (verb) 1 Materials testing exercise 1 brittle (adjective) 2 Properties exercise 8 burn (verb) 2 Properties exercise 1 ceramic (noun) 2 Properties exercise 1 coat (verb: a thin layer of something that covers a surface)

2 Properties exercise 9
composite (noun) 2 Properties exercise 9 compress (verb) 1 Materials testing exercise 4 concrete (noun) 2 Properties exercise 1 corrode (verb) 2 Properties exercise 7 corrosion-resistant (adjective) 2 Properties exercise 7 cotton (noun) 3 Buying exercise 6 cromoly (noun) 2 Properties exercise 9 cycle (verb) 1 Materials testing exercise 6 dash (phrases for emails) 3 Buying exercise 2 diamond (noun) 2 Properties exercise 1 dot (phrases for emails) 3 Buying exercise 2 drop (verb) 1 Materials testing exercise 4 engine (noun) 2 Properties exercise 9 fibreglass (noun) 2 Properties exercise 1 flexible (adjective) 2 Properties exercise 8 forward slash (phrases for emails) 3 Buying exercise 2 frame (noun) 2 Properties exercise 9 graphite (noun) 2 Properties exercise 1 hang (verb) 1 Materials testing exercise 5 hard (adjective) 2 Properties exercise 7 heat (verb) 1 Materials testing exercise 4 heat-resistant (adjective) 2 Properties exercise 7 heavy (adjective) 2 Properties exercise 8 helmet (noun) 2 Properties exercise 4 hold (verb) 1 Materials testing exercise 6
jacket (noun) 3 Buying exercise 6 lift (verb) 1 Materials testing exercise 6 light (adjective) 2 Properties 8 melt (verb) 1 Materials testing exercise 5 nose cone (noun: the pointed front section of a race car)

2 Properties exercise 9

nylon (noun) 1 Materials testing exercise 1 pick up (phrasal verb) 1 Materials testing exercise 6 piston (noun) 2 Properties exercise 9 plastic (noun) 2 Properties exercise 9 polycarbonate (noun) 1 Materials testing exercise 1 polyester (noun) 3 Buying exercise 6 polystyrene (noun) 2 Properties exercise 2 radiator (noun) 2 Properties exercise 9 rigid (adjective) 2 Properties exercise 7 rope (noun) 1 Materials testing exercise 1 rubber (noun) 2 Properties exercise 2 run (verb) 1 Materials testing exercise 6 scratch (verb) 1 Materials testing exercise 4 soft (adjective) 2 Properties exercise 8 spoiler (noun) 2 Properties exercise 9 steel (noun) 2 Properties exercise 2 stretch (verb) 1 Materials testing exercise 1 strike (verb) 1 Materials testing exercise 1 strong (adjective) 2 Properties exercise 8 titanium (noun) 2 Properties exercise 2 touch (verb) 1 Materials testing exercise 6 tough (adjective) 2 Properties exercise 7 tyre (noun) 2 Properties exercise 9 underscore (phrases for emails) 3 Buying exercise 2 vehicle (noun) 2 Properties exercise 9 weak (adjective) 2 Properties exercise 8 wheel (noun) 2 Properties exercise 9 wing (noun) 2 Properties exercise 9
aluminium (noun) 2 Quantities exercise 3 amazing (adjective) 2 Quantities exercise 3 approximate (adjective) 2 Quantities exercise 1 attach (verb) 3 Future projects exercise 6 bag (noun) 2 Quantities exercise 5 base (noun) 2 Quantities exercise 3 bridge (noun) 1 Dimensions exercise 1 build (verb) 3 Future projects exercise 6 building (noun) 2 Quantities exercise 1 cable (noun: thick steel wire used for securing something) 1 Dimensions exercise 3
cement (noun) 2 Quantities exercise 5 completion (noun) 3 Future projects exercise 2 compressed air (noun) 3 Future projects exercise 3
deck (noun; the floor or platform of a bridge) 1 Dimensions exercise 3
deep (adjective) 1 Dimensions exercise 5 depth (noun) 1 Dimensions exercise 5 design (noun) 3 Future projects exercise 4 diesel (noun) 3 Future projects exercise 3 elevator (noun) 2 Quantities exercise 3 fibreglass (noun) 3 Future projects exercise 4
fix (verb) 3 Future projects exercise 6 footprint (noun) 2 Quantities exercise 3 foundation (noun) 3 Future projects exercise 6 glass (noun) 2 Quantities exercise 3 glue (noun) 2 Quantities exercise 5 height (noun) 1 Dimensions exercise 4 high (adjective) 1 Dimensions exercise 5 inner (adjective) 1 Dimensions exercise 4 lay (verb) 3 Future projects exercise 6
length (noun) 1 Dimensions exercise 4 location (noun) 3 Future projects exercise 2 long (adjective) 1 Dimensions exercise 5 magnetism (noun) 3 Future projects exercise 3 make (verb: construct) 3 Future projects exercise 6 material (noun) 1 Dimensions exercise 4 oil (noun) 2 Quantities exercise 5 outer (adjective) 1 Dimensions exercise 4 packet (noun) 2 Quantities exercise 5 paint (noun) 2 Quantities exercise 4 pier (noun) 1 Dimensions exercise 3 put (verb) 3 Future projects exercise 6 pylon (noun) 1 Dimensions exercise 3 quantity (noun) 2 Quantities exercise 5 reinforced concrete (noun) 2 Quantities exercise 3 span (noun) 1 Dimensions exercise 3 specification (noun) 1 Dimensions exercise 4 steel (noun) 2 Quantities exercise 4 storey (noun) 2 Quantities exercise 3 structure (noun) 1 Dimensions exercise 4 super-fast (adjective) 2 Quantities exercise 3 superglue (noun) 2 Quantities exercise 5 tin (noun) 2 Quantities exercise 5 Transatlantic (adjective) 3 Future projects exercise 2 tube (noun: container used for semi-liquids, e.g. toothpaste) 2 Quantities exercise 5 tube (noun: underground train) 3 Future projects exercise 2 vacuum (noun) 3 Future projects exercise 3 wide (adjective) 1 Dimensions exercise 5 width (noun) 1 Dimensions exercise 4
accident (noun) 1 Recent incidents exercise 4 ago (adverb) 3 Past events exercise 4 ambulance (noun) 1 Recent incidents exercise 4 beam (noun: girder) 1 Recent incidents exercise 8 bend (verb: irregular) 2 Damage and loss exercise 2 body (noun: main part of radio) 2 Damage and loss exercise 3
bonnet (noun) 2 Damage and loss exercise 9 boot (noun: of car) 2 Damage and loss exercise 9 break (verb; irregular) 1 Recent incidents exercise 4 break into (phrasal verb: irregular) 1 Recent incidents exercise 4
brick (noun) 1 Recent incidents exercise 8 bucket (noun) 1 Recent incidents exercise 8 builder (noun) 1 Recent incidents exercise 8 bumper (noun) 2 Damage and loss exercise 9 burn (verb: irregular) 2 Damage and loss exercise 2 buy (verb: irregular) 1 Recent incidents exercise 5 check (verb: regular) 1 Recent incidents exercise 5 climb down (phrasal verb: regular) 1 Recent incidents 8 crack (regular) 2 Damage and loss exercise 2 crane (noun) 1 Recent incidents exercise 8 crash (verb: regular) 1 Recent incidents exercise 5 cut (verb: irregular) 1 Recent incidents exercise 4 damage (noun) 2 Damage and loss exercise 1 dent (regular) 2 Damage and loss exercise 2 digger (noun) 1 Recent incidents exercise 8 display screen (noun) 2 Damage and loss exercise 3 drive (verb: irregular - operate a vehicle) 1 Recent incidents exercise 4
exhaust pipe (noun) 1 Recent incidents exercise 2 external speaker (noun) 2 Damage and loss exercise 3 fall (verb: irregular) 1 Recent incidents exercise 4 fall over (phrasal verb; irregular) 1 Recent incidents exercise 8
fly (verb: irregular) 3 Past events exercise 2 front (adjective) 2 Damage and loss exercise 9 fuse (noun) 1 Recent incidents exercise 6 global navigation (adjective) 3 Past events exercise 5 go (verb: irregular) 3 Past events Language goggles (noun: plural) 2 Damage and loss exercise 7 happen (verb: regular) 1 Recent incidents exercise 4 hard hat (noun) 1 Recent incidents exercise 7 headphones (noun) 2 Damage and loss exercise 3 insulation (noun) 2 Damage and loss exercise 7 land (verb: regular) 3 Past events exercise 2
launch (verb: regular) 3 Past events exercise 2 lens (noun) 2 Damage and loss exercise 7 less (adverb) 3 Past events exercise 5 lose (verb: irregular) 1 Recent incidents exercise 4 lower (verb) 1 Recent incidents exercise 8 nearside (adjective) 2 Damage and loss exercise 9 Moon (noun) 3 Past events exercise 1 more (adverb) 3 Past events exercise 5 move (verb: regular) 1 Recent incidents exercise 8 offside (adjective) 2 Damage and loss exercise 9 order (verb: regular) 1 Recent incidents exercise 5 overalls (noun: plural) 2 Damage and loss exercise 7 pick up (phrasal yerb: regular) 1 Recent incidents exercise 8
put (verb: irregular) 1 Recent incidents exercise 5 put on (phrasal verb: irregular) 1 Recent incidents exercise 8
raise (verb: regular) 1 Recent incidents exercise 8 rear (adjective) 2 Damage and loss exercise 9 repair (verb: regular) 1 Recent incidents exercise 5 satellite (noun) 3 Past events exercise 1 scaffolding (noun) 1 Recent incidents exercise 8 scratch (regular) 2 Damage and loss exercise 2 sell (verb: irregular) 1 Recent incidents exercise 5 send (verb: irregular) 1 Recent incidents exercise 5 shuttle (noun) 3 Past events exercise 1 sledgehammer (noun) 1 Recent incidents exercise 8 snorkel (verb: regular) 3 Past events exercise 8 Space Station (noun) 3 Past events exercise 1 space tourist (noun) 3 Past events exercise 1 spacewalk (noun) 3 Past events exercise 1 spark plug (noun) 1 Recent incidents exercise 6 speak (verb: irregular) 1 Recent incidents exercise 5 steal (verb: irregular) 1 Recent incidents exercise 5 surface (noun) 2 Damage and loss exercise 7 take (verb: irregular) 1 Recent incidents exercise 4 take off (phrasal verb: irregular) 1 Recent incidents exercise 8
tear (verb; irregular) 2 Damage and loss exercise 7 telescope (noun) 3 Past events exercise 1 today (noun) 3 Past events exercise 4 user manual (noun) 2 Damage and loss exercise 3 windscreen (noun) 2 Damage and loss exercise 9 write (verb: irregular) 1 Recent incidents exercise 5 yesterday (noun) 3 Past events exercise 4
above (preposition) 1 Operation exercise 6 accelerate (verb) 1 Operation exercise 6 acceleration (noun) 1 Operation exercise 2 adapter (noun) 2 Hotline exercise 6 airboard (noun) 1 Operation exercise 2 antenna (noun) 2 Hotline exercise 8 attached to (preposition) 1 Operation exercise 6 backwards (adverb) 1 Operation exercise 6 battery (noun) 3 User guide exercise 3 below (preposition) 1 Operation exercise 6 body (noun; main part of airboard) 1 Operation exercise 2 brake (noun) 1 Operation exercise 5 check (verb) 3 User guide exercise 1 computer (noun) 2 Hotline exercise 3 conference (noun) 3 User guide exercise 6 connect (verb) 2 Hotline exercise 3 connected (adjective) 2 Hotline exercise 3 connected to (preposition) 1 Operation exercise 8 contain (verb) 1 Operation exercise 6 control (verb) 1 Operation exercise 2 cushion (noun: of air) 1 Operation exercise 6 diagram (noun) 2 Hotline exercise 8 digital receiver (noun) 2 Hotline exercise 8 disk (noun) 3 User guide exercise 2 disk drive (noun) 3 User guide exercise 2 display (noun) 3 User guide exercise 2 downwards (adverb) 1 Operation exercise 6 drive (verb: supply the power to make something work) 1 Operation exercise 2
engine (noun) 1 Operation exercise 2 engineering (noun: a profession) 3 User guide exercise 6 fan (noun) 1 Operation exercise 2 fibreglass (adjective) 1 Operation exercise 6 flat (adjective: not producing electricity) 3 User guide exercise 3
flexible (adjective) 1 Operation exercise 6 force (verb) 1 Operation exercise 2 forwards (adverb) 1 Operation exercise 2 friction wheel (noun) 1 Operation exercise 6 front (noun) 1 Operation exercise 6 function (noun) 1 Operation exercise 2 ground (noun) 1 Operation exercise 6 handlebar (noun) 1 Operation exercise 2 hold (verb) 1 Operation exercise 7 hotline (noun) 2 Hotline exercise 3 hovercraft (noun) 1 Operation exercise 6 How can I help you? (phrase) 2 Hotline exercise 2 increase (verb) 1 Operation exercise 5 IT (noun; = information technology) 3 User guide exercise 6
job (noun: function) 1 Operation exercise 7 key (noun: of computer keyboard) 2 Hotline exercise 1 LED (noun) 3 User guide exercise 1 lever (noun) 1 Operation exercise 2 loose (adjective) 3 User guide exercise 5 modem (noun) 2 Hotline exercise 3 mounted on (preposition) 1 Operation exercise 6 notebook computer (noun) 3 User guide exercise 2 open (verb: switch on) 3 User guide exercise 2 paper (noun) 3 User guide exercise 5 platform (noun: raised structure used to keep things off the ground) 1 Operation exercise 6 power button (noun) 3 User guide exercise 1 power outlet (noun) 2 Hotline exercise 2 power source (noun) 3 User guide exercise 2 press (verb) 2 Hotline exercise 1 printer (noun) 3 User guide exercise 5 problem (noun) 3 User guide exercise 5 propel (verb) 1 Operation exercise 6 pull (air) in (phrase) 1 Operation exercise 2 purpose (noun) 1 Operation exercise 7 push (air) downwards (phrase) 1 Operation exercise 4 recharge (verb) 3 User guide exercise 3 release (verb) 1 Operation exercise 6 replace (verb) 3 User guide exercise 3 rider (noun) 1 Operation exercise 6 router (noun) 2 Hotline exercise 3 rubber (adjective) 1 Operation exercise 6 screen (noun) 3 User guide exercise 3 skirt (noun: of hovercraft) 1 Operation exercise 6 socket (noun) 2 Hotline exercise 8 speaker (noun) 2 Hotline exercise 6 speed (noun) 1 Operation exercise 2 start (verb) 3 User guide exercise 1 starter motor (noun) 3 User guide exercise 4 steer (verb) 1 Operation exercise 2 stop (verb) 1 Operation exercise 6 suck (air) in (phrase) 1 Operation exercise 6 support (verb) 1 Operation exercise 2 suspended from (preposition) 1 Operation exercise 6 switch (noun) 3 User guide exercise 3 switch off (phrase) 3 User guide exercise 5 switch on (phrase) 3 User guide exercise 2 take out (phrase) 3 User guide exercise 2 touch (verb) 1 Operation exercise 6 turn (verb) 3 User guide exercise 3 upwards (adverb) 1 Operation exercise 6 You're welcome. (phrase) 3 User guide exercise 5
aircraft (noun) 3 Investigations exercise 3 air traffic control (noun) 3 Investigations exercise 2 altitude (noun) 3 Investigations exercise 3 anti-collision system (compound noun) 3 Investigations exercise 3
arm (noun) 1 Rules and warnings exercise 6 automatically (adverb) 3 Investigations exercise 3 aviation (noun) 3 Investigations exercise 3 back (noun: part of the human body) 1 Rules and warnings exercise 6
bare (adjective) 1 Rules and warnings exercise 5 beam (noun: girder) 2 Safety hazards exercise 3 bench (noun) 2 Safety hazards exercise 5 boots (noun: clothing) 1 Rules and warnings exercise 5 burn (verb) 1 Rules and warnings exercise 6 careful (adjective) 1 Rules and warnings exercise 2 chemical (noun) 1 Rules and warnings exercise 5 circular (adjective) 1 Rules and warnings exercise 4 cloud (noun) 3 Investigations exercise 3 coil (verb) 2 Safety hazards exercise 5 cone (noun) 2 Safety hazards exercise 5 danger (noun) 1 Rules and warnings exercise 4 dense (adjective) 3 Investigations exercise 3 distance (noun) 3 Investigations exercise 3 drink (noun) 2 Safety hazards exercise 5 emergency (noun) 3 Investigations exercise 3 eye (noun) 1 Rules and warnings exercise 7 factory (noun) 1 Rules and warnings exercise 2 finding (noun) 2 Safety hazards exercise 7 fire extinguisher (compound noun) 2 Safety hazards exercise 5
fire exit (noun) 2 Safety hazards exercise 5 flight (noun) 3 Investigations exercise 3 flight path (noun) 3 Investigations exercise 3 floor (noun) 2 Safety hazards exercise 5 food (noun) 2 Safety hazards exercise 5 gap (noun) 2 Safety hazards exercise 2 gear (noun) 1 Rules and warnings exercise 7 glove (noun) 1 Rules and warnings exercise 2 guard (noun: on a machine) 1 Rules and warnings exercise 4
hand (noun) 1 Rules and warnings exercise 5 hard hat (noun) 1 Rules and warnings exercise 1 hazard (noun) 1 Rules and warnings exercise 4 high-voltage (adjective) 1 Rules and warnings exercise 2 hook (noun) 1 Rules and warnings exercise 3 hurt (verb) 1 Rules and warnings exercise 6 injure (verb) 1 Rules and warnings exercise 4
injury (noun) 3 Investigations exercise 3 inspect (verb) 2 Safety hazards exercise 5 inspector (noun) 3 Investigations exercise 5 inspection (noun) 2 Safety hazards exercise 7 investigator (noun) 3 Investigations exercise 4 jet (noun) 3 Investigations exercise 3 laboratory (noun) 1 Rules and warnings exercise 7 laser (noun) 1 Rules and warnings exercise 7 leg (noun) 3 Investigations exercise 5 lighted (adjective) 1 Rules and warnings exercise 5 liquid (noun) 2 Safety hazards exercise 5 lock (verb) 2 Safety hazards exercise 5 look out (phrasal verb) 2 Safety hazards exercise 1 machine (noun) 1 Rules and warnings exercise 2 mandatory (adjective) 1 Rules and warnings exercise 4 match (noun: small wooden stick you use to make fire) 1 Rules and warnings exercise 5 military (adjective) 3 Investigations exercise 3 mind (verb: look out for) 2 Safety hazards exercise 1 mobile phone (compound noun) 1 Rules and warnings exercise 2
navigation (noun) 3 Investigations exercise 2 near miss (compound noun) 3 Investigations exercise 3 padlock (noun) 2 Safety hazards exercise 7 pass (verb: regular - move past) 3 Investigations exercise 3 passenger (noun) 3 Investigations exercise 3 pilot (noun) 3 Investigations exercise 2 poison (noun) 1 Rules and warnings exercise 4 prohibit (verb) 1 Rules and warnings exercise 4 prohibition (noun) 1 Rules and warnings exercise 4 round (adjective) 1 Rules and warnings exercise 4 rule (noun) 1 Rules and warnings exercise 1 saw (noun: tool) 1 Rules and warnings exercise 4 safety (adjective) 1 Rules and warnings exercise 1 sea level (compound noun) 3 Investigations exercise 3 service (verb) 1 Rules and warnings exercise 4 shape (noun) 1 Rules and warnings exercise 3 shock (noun) 1 Rules and warnings exercise 2 sign (noun) 1 Rules and warnings exercise 3 single (adjective) 2 Safety hazards exercise 7 slip (verb; regular) 3 Investigations exercise 5 smoke (verb) 1 Rules and warnings exercise 5 space (noun: an empty area) 1 Rules and warnings exercise 5
stair (noun) 2 Safety hazards exercise 5 surface (noun) 1 Rules and warnings exercise 7 take care (phrasal verb) 1 Rules and warnings exercise 7 take place (phrasal verb) 3 Investigations exercise 4
touch (verb) 1 Rules and warnings exercise 2 trap (verb) 1 Rules and warnings exercise 2 triangular (adjective) 1 Rules and warnings exercise 4 trip (verb: fall over something) 2 Safety hazards exercise 2 type (noun) 1 Rules and warnings exercise 4 warn (verb) 1 Rules and warnings exercise 4
warning (noun) 1 Rules and warnings exercise 4 wash (verb) 1 Rules and warnings exercise 5 wear (verb) 1 Rules and warnings exercise 5 weight (noun) 1 Rules and warnings exercise 7 workshop (noun) 2 Safety hazards exercise 4
alarm bell (noun) 2 Switches and relays exercise 2 allow (verb: sth to happen) 1 Pistons and valves exercise 3 anemometer (noun) 3 Rotors and turbines exercise 5 automatically (adverb) 3 Rotors and turbines exercise 5 beep (noun) 2 Switches and relays exercise 2 bell (noun) 2 Switches and relays exercise 1 blade (noun: long flat part of a machine) 3 Rotors and turbines exercise 3
blow (verb) 3 Rotors and turbines exercise 5 brake (noun) 3 Rotors and turbines exercise 3 burglar (noun) 2 Switches and relays exercise 3 buzzer (noun) 2 Switches and relays exercise 1 cause (verb; sth to happen) 1 Pistons and valves exercise 3 chamber (noun) 1 Pistons and valves exercise 3 circuit (noun) 2 Switches and relays exercise 4 click (noun: a short sharp sound) 2 Switches and relays exercise 2
click (verb: press a computer mouse) 3 Rotors and turbines exercise 5
conductor (noun) 2 Switches and relays exercise 1 contact (noun) 2 Switches and relays exercise 8 contain (verb) 3 Rotors and turbines exercise 4 container (noun) 3 Rotors and turbines exercise 4 contract (verb) 1 Pistons and valves exercise 5 damage (verb) 3 Rotors and turbines exercise 5 data (noun) 3 Rotors and turbines exercise 5 decrease (verb) 1 Pistons and valves exercise 3 dial tone (noun) 2 Switches and relays exercise 2 door bell (noun) 2 Switches and relays exercise 2 download (verb) 3 Rotors and turbines exercise 5 earth (noun) 2 Switches and relays exercise 1 electro-magnet (noun) 2 Switches and relays exercise 6 expand (verb) 1 Pistons and valves exercise 5 explode (verb) 1 Pistons and valves exercise 5 fluid (noun) 1 Pistons and valves exercise 6 force (verb) 1 Pistons and valves exercise 5 gear (noun) 3 Rotors and turbines exercise 3 generator (noun) 3 Rotors and turbines exercise 3 guard (noun: someone who controls the entrance to a building) 1 Pistons and valves exercise 5 high pressure (noun) 1 Pistons and valves exercise 3 high-speed shaft 3 Rotors and turbines exercise 4 horn (noun) 2 Switches and relays exercise 2
housing (noun) 3 Rotors and turbines exercise 3 hub (noun) 3 Rotors and turbines exercise 3 increase (verb) 1 Pistons and valves exercise 3 inlet valve (noun) 1 Pistons and valves exercise 1 let (verb: sth happen) 1 Pistons and valves exercise 3 low pressure (noun) 1 Pistons and valves exercise 3 low-speed shaft (noun) 3 Rotors and turbines exercise 3 magnet (noun) 2 Switches and relays exercise 3 make (verb: sth happen) 1 Pistons and valves exercise 3 measure (verb) 3 Rotors and turbines exercise 5 motor (noun) 1 Pistons and valves exercise 6 next to (preposition) 2 Switches and relays exercise 4 nozzle (noun) 1 Pistons and valves exercise 1 oil well (noun) 1 Pistons and valves exercise 5 outlet valve (noun) 1 Pistons and valves exercise 3 overflow pipe (noun) 1 Pistons and valves exercise 5 piston (noun) 1 Pistons and valves exercise 1 piston pump (noun) 1 Pistons and valves exercise 6 powerful (adjective) 1 Pistons and valves exercise 5 prevent (verb: sth from happening) 1 Pistons and exercise 3 pump (noun) 1 Pistons and valves exercise 5 relay switch (noun) 2 Switches and relays exercise 6 rotate (verb) 3 Rotors and turbines exercise 5 rotor (noun) 3 Rotors and turbines exercise 4 send (verb) 3 Rotors and turbines exercise 5 shaft (noun) 1 Pistons and valves exercise 3 simple (adjective) 2 Switches and relays exercise 4 siren (noun) 2 Switches and relays exercise 2 sound (verb) 2 Switches and relays exercise 2 spread (verb) 1 Pistons and valves exercise 5 spring (noun) 1 Pistons and valves exercise 1 spring (verb) 2 Switches and relays exercise 6 strip (noun) 2 Switches and relays exercise 6 switch (noun) 2 Switches and relays exercise 1 terminal (noun) 2 Switches and relays exercise 1 tower (noun) 3 Rotors and turbines exercise 3 transmit (verb) 3 Rotors and turbines exercise 5 trigger (noun) 1 Pistons and valves exercise 1 tube (noun) 1 Pistons and valves exercise 1 turn (verb) 3 Rotors and turbines exercise 5 wind turbine (noun) 3 Rotors and turbines exercise 1 wire (noun) 2 Switches and relays exercise 4
about (adverb) 1 Data exercise 2 analyse (verb) 1 Data exercise 2 antenna (noun) 1 Data exercise 2 approximately (adverb) 1 Data exercise 2 around (adverb) 1 Data exercise 2 assemble (verb: regular) 3 Progress exercise 1 astronaut (noun) 2 Instructions exercise 8 at least (adverb) 1 Data exercise 2 average (adjective) 1 Data exercise 2 backwards (adverb) 2 Instructions exercise 6 body (noun: main part of rover) 1 Data exercise 2
bring (verb) 3 Progress exercise 1
button (noun) 2 Instructions exercise 6 camera (noun) 1 Data exercise 2 check (verb: regular) 3 Progress exercise 3 collect (verb) 1 Data exercise 2 complete (verb) 3 Progress exercise 3 confirm (verb) 2 Instructions exercise 2 confirmation (noum) 2 Instructions exercise 3 connect (verb) 3 Progress exercise 1
controller (noun: someone who manages the job of other people) 2 Instructions exercise 2
control centre 3 Progress exercise 3
daily (adjective) 1 Data exercise 3 diameter (noun) 1 Data exercise 2 dig (verb) 1 Data exercise 2 disconnect (verb) 3 Progress exercise 1 dismantle (verb: regular) 3 Progress exercise 1 distance (noun) 1 Data exercise 3 do (verb: irregular) 3 Progress exercise 3 equipment (noun) 3 Progress exercise 1 finish (verb) 3 Progress exercise 3 fire (verb: shoot) 1 Data exercise 2 forwards (adverb) 2 Instructions exercise 6 ground (noun) 1 Data exercise 2 helicopter (noun) 2 Instructions exercise 8 hill (noun) 2 Instructions exercise 3 include (verb) 1 Data exercise 2 inspect (verb; regular) 3 Progress exercise 1 install (verb: regular) 3 Progress exercise 4 instrument (noun) 1 Data exercise 2 joystick (noun) 2 Instructions exercise 6 laser beam (noun) 1 Data exercise 2 laser gun (noun) 1 Data exercise 2 less than (adverb) 1 Data exercise 4 lubricate (verb) 3 Progress exercise 4 mass (noun) 1 Data exercise 2 mast (noun) 1 Data exercise 2
million (noun) 1 Data exercise 7 mobile (adjective) 1 Data exercise 2 more than (adverb) 1 Data exercise 4 motorboat (noun) 2 Instructions exercise 8 nose cap (noun) 3 Progress exercise 5 obstacle (noun) 1 Data exercise 3 operate (verb) 1 Data exercise 2 orbit (verb) 1 Data exercise 7 over (adverb) 1 Data exercise 2 oxygen (noun) 3 Progress exercise 3 photograph (noun) 3 Progress exercise 1 piece (noun) 1 Data exercise 2 plane (noun) 2 Instructions exercise 8 powder (noun) 1 Data exercise 2 prepare (verb) 3 Progress exercise 1 press (verb) 2 Instructions exercise 6 progress (noun) 3 Progress exercise 3 range (noun: from a minimum to a maximum limit) 1 Data exercise 2
range (verb: to vary between a minimum and a maximum limit) 1 Data exercise 2
remain (verb) 1 Data exercise 2 remove (verb: regular) 3 Progress exercise 1 repair (verb: regular) 3 Progress exercise 1 replace (verb: regular) 3 Progress exercise 1 respond (verb) 2 Instructions exercise 5 reverse (verb) 2 Instructions exercise 2 robot (noun) 1 Data exercise 2 roll (verb) 2 Instructions exercise 3 rotate (verb) 2 Instructions exercise 2 rover (noun) 1 Data exercise 2 sample (noun) 1 Data exercise 2 scientific (adjective) 1 Data exercise 2 shuttle (noun) 2 Instructions exercise 8 simulation (noun) 2 Instructions exercise 5 soil (noun) 1 Data exercise 2 space station (noun) 3 Progress exercise 1 spacewalk (noun) 3 Progress exercise 1 support (verb) 1 Data exercise 2 surface (noun) 1 Data exercise 2 suspension 1 Data exercise 2 system (noun) 1 Data exercise 2 take (verb) 3 Progress exercise 1 titanium (noun) 1 Data exercise 2 train (verb: teach) 2 Instructions exercise 4 to the left (of) 2 Instructions exercise 2 to the right 2 Instructions exercise 3 under (adverb) 1 Data exercise 2
up to (adverb) 1 Data exercise 2 ventilation (adjective) 3 Progress exercise 4 waste (adjective) 3 Progress exercise 5
wheel (noun) 1 Data exercise 2
wheel (noun: steering wheel) 2 Instructions exercise 6

PLEASE READ THE CONDITIONS BELOW AND THE LICENCE AGREEMENT CONTAINED ON THE DISC BEFORE USE

By using this software package you accept the terms and conditions below and in the Licence Agreement.

LIMITED WARRANTY

Pearson Education (PE) warrants that the disk or CD ROM on which the software is supplied is free from defects in materials and workmanship under normal use for ninety (90) days from the date You receive it. This warranty is limited to You and is not transferable. PE does not warrant that the functions of the software meet Your requirements or that the media is compatible with any computer system on which it is used or that the operation of the software will be unlimited or error-free.
You assume responsibility for selecting the software to achieve Your intended results and for the installation of, the use of and the results obtained from the software. The entire liability of PE and your only remedy shall be replacement free of charge of the components that do not meet this warranty.
This limited warranty is void if any damage has resulted from accident, abuse, misapplication, service or modification by someone other than PE. In no event shall PE be liable for any damages whatsoever arising out of installation of the software, even if advised of the possibility of such damages. PE will not be liable for any loss or damage of any nature suffered by any party as a result of reliance upon or reproduction of or any errors in the content of the publication.

Technical English is a two-level course for students in technical or vocational education, and for company employees in training at work. It covers the core language and skills that students need to communicate successfully in all technical and industrial specialisations.

Level 1 is for students with a basic knowledge of general English who now require an elementary course in English for specific purposes. (CEF level A1)

Level 2 is for students who have completed Level 1, or have an elementary knowledge of general English, and now require a pre-intermediate course in English for specific purposes. (CEF level A2)

- Technical concepts are clearly presented using motivating texts and clear illustrations
- Topics reflect the latest developments in technology and are relevant to students' needs
- The course uses core language common to a range of specialisations
- Grammar is regularly practised and there is a comprehensive grammar summary section
- The Companion Website has further industry-specific material to support the Course Book and the Workbook

Components

- Course Book
- Course Book Audio CD
- Workbook with Audio CD
- Teacher's Book with Test Master CD-ROM
- Companion Website: www.pearsonlongman.com/technicalenglish

PEARSON
Longman

[^0]: "In America English 'Z' is pronounced 'zee' and goes into colmm I

[^1]: 1 screws 2 nuts 3 bolts 4 nails 5 washers
 6 staples $\mathbf{7}$ spanner 8 screwdriver

[^2]: Plastics: http://www.bpf.co.uk/bpfindustry/An_ Introduction_to_Plastics.cfm
 Properties of plastics: http://www.bbc.co.uk/ schools/gcsebitesize/design/resistantmaterials/ materialsmaterialsrev6.shtml
 Properties of metals and alloys: http://www.bbc, co.uk/schools/gcsebitesize/design/resistantmaterials/ materialsmaterialsrev4.shtml
 Composites: http://en.wikipedia.org/wiki/Composite_ material

[^3]: 1 Yes, I do.
 2 No, I don't.
 3 No, I'm not.
 4 Yes, we have.
 5 No, I didn't.

[^4]: 1 What's the rover called?
 2 How many wheels does it have?
 3 What are the wheels made of?
 4 What are the arms attached to?
 5 What is the mast mounted on?/ Where is the mast mounted
 6 How high is the rover?
 7 What does the MastCam do?
 8 What does the ChemCam do?
 9 How heavy are the scientific instruments?
 10 How fast can the rover move?

